Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry

Structural And Functional Characterization Of The Endosome-Associated Deubiquitinating Enzyme Amsh, Christopher Williamson Davies Oct 2013

Structural And Functional Characterization Of The Endosome-Associated Deubiquitinating Enzyme Amsh, Christopher Williamson Davies

Open Access Dissertations

The endosomal sorting complexes required for transport (ESCRT) machinery is a ubiquitin-dependent molecular mechanism made of up of four individual complexes: ESCRT-0, -I, -II, III, that is necessary for regulating the degradation of cell surface receptors directed towards the lysosome. Not only are the ESCRTs implicated in endosomal sorting and trafficking of proteins, its members also have roles in other important biological processes such as: cytokinesis, HIV budding, transcriptional regulation, and autophagy. As a function of its involvement in several processes throughout the cell, the ESCRT machinery is implicated in a wide variety of diseases including cancer, neurological disease, bacterial …


Characterization Of The Specificity And Functions Of The Protein Phosphatase Cdc14, Christie Eissler Oct 2013

Characterization Of The Specificity And Functions Of The Protein Phosphatase Cdc14, Christie Eissler

Open Access Dissertations

Protein phosphorylation is perhaps the most ubiquitous posttranslational modification in eukaryotes and recent studies suggest that upwards of 75% of human proteins are phosphorylated. Many proteins are phosphorylated at multiple sites, often controlled by multiple kinases and phosphatases. Multisite phosphorylation can differentially affect the functional and regulatory cellular outcomes. For example, dephosphorylation of a protein at a particular site may inhibit nuclear localization of a protein while dephosphorylation of a different site may be necessary for enzymatic activation of a protein. Thus, multisite protein phosphorylation can complicate our understanding of the biological significance and the functional consequences of protein phosphorylation. …


The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl Oct 2013

The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl

Open Access Dissertations

The purpose of this research was to advance the understanding of lower termite digestive physiology and discover potential biocatalysts that can aid in the degradation of lignocellulosic biomass. Various protein characterization and gene expression methods were used throughout this research in order to accomplish these objectives. The results of this dissertation indicate that: 1) termites and their symbionts act in a synergistic manner to degrade biomass in vitro, 2) the host fraction of the gut (i.e., foregut and midgut) is the likely site of glucose absorption, 3) the termite and its symbionts contribute specific enzymes to the digestive process, 4) …


Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John Oct 2013

Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John

Open Access Dissertations

The work in this thesis details the design, synthesis, and biological evaluation of molecular inhibitors for the inhibition of biologically relevant enzymes. The first three chapters of this thesis concern the polyphenol resveratrol and its inhibition of the quinone reductase 2 (QR2) enzyme. The work on this subject resulted in the complete design, synthesis, biological and structural evaluation of a second generation library of resveratrol analogues. From this work we identified a novel resveratrol analogue that inhibits QR2 in a previously unknown binding orientation. The fourth chapter of this thesis details the de novo design of molecules for the inhibition …


Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman Oct 2013

Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman

Open Access Dissertations

Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry.

The work demonstrated in this dissertation greatly involves gas-phase covalent and non-covalent Schiff base chemistry on peptide and protein ions. The reagent dianion, 4-formyl 1,3-benzene disulfonic acid, has been used to covalently modify unprotonated primary …


Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari Oct 2013

Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari

Open Access Dissertations

NMR spectroscopy is a powerful analytical tool for both qualitative and quantitative metabolite profiling analysis. However, accurate quantitative analysis of biological systems especially using one dimensional NMR has been challenging due to signal overlap. In contrast, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using NMR spectroscopy or mass spectrometry. In this thesis we show improved sensitivity and resolution of NMR experiments imparted by 15N and 13C isotope tagging which enables the accurate analysis of plasma metabolites. To date, isotope tagging has been used …


Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple Oct 2013

Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple

Open Access Dissertations

Many proteins require prenylation in order to be biologically functional. Some such proteins include the small Ras and Rho GTPase superfamilies, nuclear lamins A and B, and the kinesin motor proteins CENP-E and F. Prenyltransferase (PTase) inhibition is currently being explored as a possible treatment not only for cancer but for a wide variety of other diseases.

Clinical studies revealed that the effectiveness of farnesyltransferase inhibitors (FTIs) to treat Ras-dependent tumors is determined by which isoform of Ras is overactive. Unfortunately the majority of Ras-dependent tumors have a mutation in either the N- or K-Ras isoforms; both of these isoforms …


Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla Oct 2013

Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla

Open Access Dissertations

To better understand a class of transporters known as Calcium/Cation Antiporters (CaCAs), the bacterial calcium/proton antiporter CAXCK31 was purified and characterized. New methods were developed for its heterologous overexpression and purification. These methods help to define stress responses to toxic membrane overproduction in E. coli and may be broadly applicable to studies of membrane proteins. The results from a variety of biochemical and biophysical experiments demonstrated that CAXCK31 exists as a dimer in the membrane and can be purified in the dimeric state. The methods used include chemical cross-linking, FRET, and SEC-MALS. In addition, various transport properties of CAXCK31, including …


Development Of Tyrosine Kinase Peptide Biosensors And Methods For Detection, Andrew Michael Lipchik Oct 2013

Development Of Tyrosine Kinase Peptide Biosensors And Methods For Detection, Andrew Michael Lipchik

Open Access Dissertations

New methods to monitor tyrosine kinase activity are critical for studying kinases in cell biology, drug discovery and the clinic. Peptide-based biosensors for detection of kinase activity utilitize a kinase specific artificial peptide substrate, which can report intercellular kinase activity through the incorporation of phosphate.

An artificial Syk substrate peptide was developed and incorporated with other functional modules to produce a Syk biosensor. These modules included a biotin-tag for affinity capture, a photo-cleavable amino acid to allow release of the substrate from the delivery module and the cell penetrating peptides TAT. A live cell kinase assay utilizing this biosensor was …


An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan Oct 2013

An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan

Open Access Dissertations

The successful utilization of lignocellulosic biomass as a feedstock for fuels and chemicals necessitates storage for 2-6 months. It is correspondingly important to understand the impact of storage parameters - moisture concentration, temperature and duration - on biomass quality.

As aerobic storage is the most viable large-scale solution, aerobic storage experiments were carried out with three projected bioenergy feedstocks - sweet sorghum (Sorghum bicolor) bagasse, corn (Zea mays) stover and switchgrass (Panicum virgatum). Stored samples of each were examined for dry matter loss and composition change to develop a material balance around carbohydrates and lignin.

A mean dry matter loss …