Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan Mar 2022

Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan

Doctoral Dissertations

The study of protein higher-order structures is vital because it is closely related to the investigation of protein folding, aggregation, interaction and protein therapeutics. Consequently, numerous biochemical and biophysical tools have been developed to study protein higher-order structures in many different situations. The combination of covalent labeling (CL) and mass spectrometry (MS) has emerged as a powerful tool for studying protein structures and offers many advantages over other traditional techniques, such as better structural coverage, high throughput, high sensitivity, and the ability to study proteins in mixtures. This dissertation focuses on diethylpyrocarbonate (DEPC) as an effective CL reagent that can …


Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden Oct 2021

Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden

Doctoral Dissertations

Amyloid-forming proteins are implicated in a number of debilitating diseases. While many amyloid-forming proteins are well studied, the early stages of amyloidosis are still not well understood on a molecular level. Covalent labeling, combined with mass spectrometry (CL-MS), is uniquely well suited to provide molecular-level insight into the factors governing the early stages of amyloidosis. This dissertation leverages CL-MS techniques to examine the early stages of β-2-microglobulin (β2m) amyloidosis. β2m is the protein that forms amyloids in the condition known as dialysis-related amyloidosis. An automated CL-MS technique that uses dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide as a labeling reagent was developed and used …


Covalent Labeling-Mass Spectrometry For Characterizing Protein-Ligand Complexes, Tianying Liu Feb 2020

Covalent Labeling-Mass Spectrometry For Characterizing Protein-Ligand Complexes, Tianying Liu

Doctoral Dissertations

This dissertation focuses on applying covalent labeling (CL) and mass spectrometry (MS) for characterizing protein-ligand complexes. Understanding protein-ligand interactions has both fundamental and applied significance. Covalent labeling is a protein surface modification technique that selectively modifies solvent-exposed amino acid side chains of proteins. A covalent bond is formed between the functional groups of labeling reagent and protein’s side chain. One of the key factors that affects CL reactivity is a side chain’s solvent accessibility. Ligand binding protects residues on the protein surface from being labeled, and residues involved in ligand binding can be indicated via decreases in labeling extents. The …


The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto Mar 2016

The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto

Doctoral Dissertations

Thorough insight into a protein’s structure is necessary to understand how it functions and what goes wrong when it malfunctions. The structure of proteins, however, is not easily analyzed. The analysis must take place under a narrow range of conditions or risk perturbing the very structure being probed. Furthermore, the wide diversity in size and chemistry possible in proteins significantly complicates this analysis. Despite this numerous methods have been developed in order to analyze protein structure. In this work, we demonstrate that mass spectrometry (MS)-based techniques are capable of characterizing the structure of particularly challenging proteins. This is done through …