Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Publications

Series

2008

Dimerization

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Probing The Functional Tolerance Of The B Subunit Of Escherichia Coli Atp Synthase For Sequence Manipulation Through A Chimera Approach., Yumin Bi, Joel C Watts, Pamela Krauss Bamford, Lee-Ann K Briere, Stanley D Dunn Jul 2008

Probing The Functional Tolerance Of The B Subunit Of Escherichia Coli Atp Synthase For Sequence Manipulation Through A Chimera Approach., Yumin Bi, Joel C Watts, Pamela Krauss Bamford, Lee-Ann K Briere, Stanley D Dunn

Biochemistry Publications

A dimer of 156-residue b subunits forms the peripheral stator stalk of eubacterial ATP synthase. Dimerization is mediated by a sequence with an unusual 11-residue (hendecad) repeat pattern, implying a right-handed coiled coil structure. We investigated the potential for producing functional chimeras in the b subunit of Escherichia coli ATP synthase by replacing parts of its sequence with corresponding regions of the b subunits from other eubacteria, sequences from other polypeptides having similar hendecad patterns, and sequences forming left-handed coiled coils. Replacement of positions 55-110 with corresponding sequences from Bacillus subtilis and Thermotoga maritima b subunits resulted in fully functional …


The Stator Complex Of The A1a0-Atp Synthase--Structural Characterization Of The E And H Subunits., Erik Kish-Trier, Lee-Ann K Briere, Stanley D Dunn, Stephan Wilkens Jan 2008

The Stator Complex Of The A1a0-Atp Synthase--Structural Characterization Of The E And H Subunits., Erik Kish-Trier, Lee-Ann K Briere, Stanley D Dunn, Stephan Wilkens

Biochemistry Publications

Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with …