Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Purdue University

2013

Discipline
Keyword
Publication
Publication Type

Articles 1 - 21 of 21

Full-Text Articles in Biochemistry

Functional Analysis Of The Acetic Acid Resistance (Aar) Gene Cluster In Acetobacter Aceti Strain 1023, Elwood Mullins, T Joseph Kappock Dec 2013

Functional Analysis Of The Acetic Acid Resistance (Aar) Gene Cluster In Acetobacter Aceti Strain 1023, Elwood Mullins, T Joseph Kappock

Department of Biochemistry Faculty Publications

Vinegar production requires acetic acid bacteria that produce, tolerate, and conserve high levels of acetic acid. When ethanol is depleted, aerobic acetate overoxidation to carbon dioxide ensues. The resulting diauxic growth pattern has two logarithmic growth phases, the first associated with ethanol oxidation and the second associated with acetate overoxidation. The vinegar factory isolate Acetobacter aceti strain 1023 has a long intermediate stationary phase that persists at elevated acetic acid levels. Strain 1023 conserves acetic acid despite possessing a complete set of citric acid cycle (CAC) enzymes, including succinyl-CoA:acetate CoA-transferase (SCACT), the product of the acetic acid resistance (aar …


Cellular Uptake Mechanism Of Paclitaxel Nanocrystals, Iris K. Archer, Zhaohui Wang, Tonglei Li Oct 2013

Cellular Uptake Mechanism Of Paclitaxel Nanocrystals, Iris K. Archer, Zhaohui Wang, Tonglei Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Therapeutic options for metastasized human cancer in current practice remain limited and, sadly, there is no cure for metastatic cancer. The typical approach, chemotherapy, has both low efficacy due to poor drug solubility, and cytotoxic side effects to healthy tissue when delivered indiscriminately. To address both of these issues, we are pursuing the use of nanocrystal formulations of current chemotherapeutic agents as delivery platforms. Herein, we have studied cellular uptake mechanisms in cancer cells of nanocrystals of a chemotherapeutic agent, paclitaxel. Our goal in this study is to determine whether the nanocrystals can be taken up via endocytosis, especially when …


Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs Oct 2013

Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Set1 complex, a histone methyltransferase complex found in S. cerevisiae (budding yeast), is the only histone methyltransferase responsible for catalyzing methylation of histone H3 at Lysine 4. It possesses homologues in other species, humans included. While yeast only have the Set1 complex, the human homologues of the yeast Set1 complex include mixed-lineage leukemia family (MLL1-4), Set1 A, Set1 B, among others. MLL1-4 has been shown to play a role in transcription, cell type specification, and the development of leukemia. One application of characterizing the role of a protein is that the information gained can provide insight into the function …


Involvement Of Post-Transcriptional Histone Modifications In Chromosome Missegregation, Jessica N. Gabbard, Ann Kirchmaier Oct 2013

Involvement Of Post-Transcriptional Histone Modifications In Chromosome Missegregation, Jessica N. Gabbard, Ann Kirchmaier

The Summer Undergraduate Research Fellowship (SURF) Symposium

Proper chromosome segregation during mitosis ensures the equal inheritance of parental DNA by two daughter cells. Errors in chromosome segregation result in aneuploidy, the inheritance of abnormal chromosome numbers. Aneuploidy is a characteristic of tumors cells; therefore, understanding the factors that cause chromosome missegregation will provide insight into carcinogenesis. Certain post-transcriptional histone modifications in centromeric and pericentromeric regions are associated with maintaining kinetochore integrity and ensuring proper chromosome segregation. However, whether loss or improper distribution of modifications directly or indirectly causes chromosome missegregation is yet to be determined. To compare the DNA content of mutated yeast strains relative to WT, …


Saccharomyces Cerevisiae Cdc7 Homology In Drosophila Melanogaster, Marcus R. Hosler, Robert E. Stephenson, Vikki M. Weake Oct 2013

Saccharomyces Cerevisiae Cdc7 Homology In Drosophila Melanogaster, Marcus R. Hosler, Robert E. Stephenson, Vikki M. Weake

The Summer Undergraduate Research Fellowship (SURF) Symposium

Saccharomyces cerevisiae Dbf4(Dumbbell former 4) and Cdc7(Cell Division Cycle 7) form a complex that phosphorylates Mcm2 (Minichromosome maintenance 2) to initiate DNA replication. Cdc7 is a target for cancer research because there is a Cdc7 ortholog in humans that is necessary for DNA replication and cell survival. Our goal is to characterise a putative Cdc7 homolog in Drosophila melanogaster (dCdc7). We have previously shown that expression of the known Drosophila Dbf4 ortholog, Chiffon, and dCdc7 can rescue yeast cells deficient in active Cdc7. Our hypothesis is that the dCdc7 is activated by Chiffon to phosphorylate MCM2. To test this hypothesis, …


Development Of A Metabolomic Method To Define The Phenylalanome In Arabidopsis Thaliana, Cole G. Wunderlich, Clint Chapple, Xu Li Oct 2013

Development Of A Metabolomic Method To Define The Phenylalanome In Arabidopsis Thaliana, Cole G. Wunderlich, Clint Chapple, Xu Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the study of metabolomics, one of the greatest challenges can be accurately identifying compounds detected in biological extracts, especially when standards are not readily available. Current metabolomic methods are also limited in that they provide little to no information about a compound’s metabolic origin. In this study, we sought to address these issues by developing a novel metabolomic method that employs stable isotope feeding, LC-MS, Xcms, and an analytical software algorithm to study the ‘phenylalanome’ of Arabidopsis thaliana. Using this approach we were able to develop a method that, based on current results, is capable of detecting over …


The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve Oct 2013

The Effects Of Exogenous Extracellular Matrix And Substrate Stiffness On Mouse Tendon Cells In Vitro, Caleb J. Mcdaniel, Sarah Calve

The Summer Undergraduate Research Fellowship (SURF) Symposium

To improve the treatment of musculoskeletal injuries, a better understanding of the transitional environment in which progenitor cells form mature musculoskeletal constructs is necessary. This need arises because injury repair requires restructuring of tissue, similar to the initial tissue construction that occurs during embryonic development by progenitor cells. Differences in both the biochemical and mechanical environments between a transitional and a differentiated state are known to take place, but how these differences affect cell behavior had not yet been characterized in mammalian tendon cells. In order to investigate this, we have determined the effects of exogenous extracellular matrix and the …


Structural And Functional Characterization Of The Endosome-Associated Deubiquitinating Enzyme Amsh, Christopher Williamson Davies Oct 2013

Structural And Functional Characterization Of The Endosome-Associated Deubiquitinating Enzyme Amsh, Christopher Williamson Davies

Open Access Dissertations

The endosomal sorting complexes required for transport (ESCRT) machinery is a ubiquitin-dependent molecular mechanism made of up of four individual complexes: ESCRT-0, -I, -II, III, that is necessary for regulating the degradation of cell surface receptors directed towards the lysosome. Not only are the ESCRTs implicated in endosomal sorting and trafficking of proteins, its members also have roles in other important biological processes such as: cytokinesis, HIV budding, transcriptional regulation, and autophagy. As a function of its involvement in several processes throughout the cell, the ESCRT machinery is implicated in a wide variety of diseases including cancer, neurological disease, bacterial …


Characterization Of The Specificity And Functions Of The Protein Phosphatase Cdc14, Christie Eissler Oct 2013

Characterization Of The Specificity And Functions Of The Protein Phosphatase Cdc14, Christie Eissler

Open Access Dissertations

Protein phosphorylation is perhaps the most ubiquitous posttranslational modification in eukaryotes and recent studies suggest that upwards of 75% of human proteins are phosphorylated. Many proteins are phosphorylated at multiple sites, often controlled by multiple kinases and phosphatases. Multisite phosphorylation can differentially affect the functional and regulatory cellular outcomes. For example, dephosphorylation of a protein at a particular site may inhibit nuclear localization of a protein while dephosphorylation of a different site may be necessary for enzymatic activation of a protein. Thus, multisite protein phosphorylation can complicate our understanding of the biological significance and the functional consequences of protein phosphorylation. …


The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl Oct 2013

The Termite Digestome: Understanding The Digestive Physiology Involved In Lignocellulosic Biomass Degradation, Zachary John Karl

Open Access Dissertations

The purpose of this research was to advance the understanding of lower termite digestive physiology and discover potential biocatalysts that can aid in the degradation of lignocellulosic biomass. Various protein characterization and gene expression methods were used throughout this research in order to accomplish these objectives. The results of this dissertation indicate that: 1) termites and their symbionts act in a synergistic manner to degrade biomass in vitro, 2) the host fraction of the gut (i.e., foregut and midgut) is the likely site of glucose absorption, 3) the termite and its symbionts contribute specific enzymes to the digestive process, 4) …


Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John Oct 2013

Design, Synthesis, And Evaluation Of Molecular Inhibitors For Biologically Relevant Enzymes, Sarah Emma St. John

Open Access Dissertations

The work in this thesis details the design, synthesis, and biological evaluation of molecular inhibitors for the inhibition of biologically relevant enzymes. The first three chapters of this thesis concern the polyphenol resveratrol and its inhibition of the quinone reductase 2 (QR2) enzyme. The work on this subject resulted in the complete design, synthesis, biological and structural evaluation of a second generation library of resveratrol analogues. From this work we identified a novel resveratrol analogue that inhibits QR2 in a previously unknown binding orientation. The fourth chapter of this thesis details the de novo design of molecules for the inhibition …


Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman Oct 2013

Gas-Phase Covalent And Non-Covalent Ion/Ion Chemistry Of Biological Macromolecules, John Robert Stutzman

Open Access Dissertations

Gas-phase ion/ion chemistry involves the interaction of oppositely charged ions inside of the mass spectrometer. During this gas-phase chemistry, particle transfer (i.e., proton and electron) or synthesis can occur at rapid reaction rates. Particle transfer represents a mature area of ion/ion chemistry, while selective covalent modification represents a fairly new area of gas-phase chemistry. Gas-phase covalent chemistry is based on traditional solution phase organic chemistry.

The work demonstrated in this dissertation greatly involves gas-phase covalent and non-covalent Schiff base chemistry on peptide and protein ions. The reagent dianion, 4-formyl 1,3-benzene disulfonic acid, has been used to covalently modify unprotonated primary …


Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari Oct 2013

Development Of Isotags For Nmr Based Metabolite Profiling And Applications, Fariba Tayyari

Open Access Dissertations

NMR spectroscopy is a powerful analytical tool for both qualitative and quantitative metabolite profiling analysis. However, accurate quantitative analysis of biological systems especially using one dimensional NMR has been challenging due to signal overlap. In contrast, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using NMR spectroscopy or mass spectrometry. In this thesis we show improved sensitivity and resolution of NMR experiments imparted by 15N and 13C isotope tagging which enables the accurate analysis of plasma metabolites. To date, isotope tagging has been used …


Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple Oct 2013

Synthesis Of Novel Isoprenoid Diphosphate Analogs As Chemical Tools To Investigate Protein Geranylgeranylation, Kayla Jo Temple

Open Access Dissertations

Many proteins require prenylation in order to be biologically functional. Some such proteins include the small Ras and Rho GTPase superfamilies, nuclear lamins A and B, and the kinesin motor proteins CENP-E and F. Prenyltransferase (PTase) inhibition is currently being explored as a possible treatment not only for cancer but for a wide variety of other diseases.

Clinical studies revealed that the effectiveness of farnesyltransferase inhibitors (FTIs) to treat Ras-dependent tumors is determined by which isoform of Ras is overactive. Unfortunately the majority of Ras-dependent tumors have a mutation in either the N- or K-Ras isoforms; both of these isoforms …


Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla Oct 2013

Characterization Of Caxck31, A Bacterial Calcium/Proton Antiporter, Marc Robert Ridilla

Open Access Dissertations

To better understand a class of transporters known as Calcium/Cation Antiporters (CaCAs), the bacterial calcium/proton antiporter CAXCK31 was purified and characterized. New methods were developed for its heterologous overexpression and purification. These methods help to define stress responses to toxic membrane overproduction in E. coli and may be broadly applicable to studies of membrane proteins. The results from a variety of biochemical and biophysical experiments demonstrated that CAXCK31 exists as a dimer in the membrane and can be purified in the dimeric state. The methods used include chemical cross-linking, FRET, and SEC-MALS. In addition, various transport properties of CAXCK31, including …


Development Of Tyrosine Kinase Peptide Biosensors And Methods For Detection, Andrew Michael Lipchik Oct 2013

Development Of Tyrosine Kinase Peptide Biosensors And Methods For Detection, Andrew Michael Lipchik

Open Access Dissertations

New methods to monitor tyrosine kinase activity are critical for studying kinases in cell biology, drug discovery and the clinic. Peptide-based biosensors for detection of kinase activity utilitize a kinase specific artificial peptide substrate, which can report intercellular kinase activity through the incorporation of phosphate.

An artificial Syk substrate peptide was developed and incorporated with other functional modules to produce a Syk biosensor. These modules included a biotin-tag for affinity capture, a photo-cleavable amino acid to allow release of the substrate from the delivery module and the cell penetrating peptides TAT. A live cell kinase assay utilizing this biosensor was …


An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan Oct 2013

An Analysis Of The Impact Of Storage Temperature, Moisture Content & Duration Upon The Chemical Components & Bioprocessing Of Lignocellulosic Biomass, Arun Athmanathan

Open Access Dissertations

The successful utilization of lignocellulosic biomass as a feedstock for fuels and chemicals necessitates storage for 2-6 months. It is correspondingly important to understand the impact of storage parameters - moisture concentration, temperature and duration - on biomass quality.

As aerobic storage is the most viable large-scale solution, aerobic storage experiments were carried out with three projected bioenergy feedstocks - sweet sorghum (Sorghum bicolor) bagasse, corn (Zea mays) stover and switchgrass (Panicum virgatum). Stored samples of each were examined for dry matter loss and composition change to develop a material balance around carbohydrates and lignin.

A mean dry matter loss …


Biochemistry / Histone Protein Modification - Purdue University, Jake R. Carlson, Katherine Beavis Aug 2013

Biochemistry / Histone Protein Modification - Purdue University, Jake R. Carlson, Katherine Beavis

Data Curation Profiles Directory

The researcher is conducting research on the brain cells of drosophila larvae. Specifically, the goal is to sort nuclei from glial and neuronal cells from the brains of mutant and wild type drosophila larvae. She will do transcriptome and high throughput ChIP-seq analysis on the cell nuclei to examine the distribution of complexes that modify histones and how loss of those complexes affects transcription. The stages of her research involve a long period of methodology development, a shorter data collection period, and then data analysis. The lab notebook contains written documentation of all experiments and trials and links to data, …


Function And X-Ray Crystal Structure Of Escherichia Coli Yfde, Elwood Mullins, Kelly L. Sullivan, T. Joseph Kappock Jul 2013

Function And X-Ray Crystal Structure Of Escherichia Coli Yfde, Elwood Mullins, Kelly L. Sullivan, T. Joseph Kappock

Department of Biochemistry Faculty Publications

Many food plants accumulate oxalate, which humans absorb but do not metabolize, leading to the formation of urinary stones. The commensal bacterium Oxalobacter formigenes consumes oxalate by converting it to oxalyl- CoA, which is decarboxylated by oxalyl-CoA decarboxylase (OXC). OXC and the class III CoA-transferase formyl- CoA:oxalate CoA-transferase (FCOCT) are widespread among bacteria, including many that have no apparent ability to degrade or to resist external oxalate. The EvgA acid response regulator activates transcription of the Escherichia coli yfdXWUVE operon encoding YfdW (FCOCT), YfdU (OXC), and YfdE, a class III CoA-transferase that is ~ 30% identical to YfdW. YfdW and …


Interaction Between Maltose Binding Protein And Escherichia Coli Maltose Transporter, Yan Huang Jan 2013

Interaction Between Maltose Binding Protein And Escherichia Coli Maltose Transporter, Yan Huang

Open Access Theses

The ATP-binding cassette (ABC) transporter superfamily is one of the largest families of transport proteins. The ABC transporters are responsible for selective permeability of solute across membranes energized by ATP hydrolysis, which occurs in all domains of life. Maltose transporter is an ABC importer that mediates maltose/maltodextrin uptake in bacteria and archaea. It is identified as an essential virulence factor in pathogenic species of Streptococcis pyogenes and Vibrio cholera (1, 2). Escherichia coli maltose transporter is a well-characterized system with crystal structures and exclusive biochemical studies available. Knowledge of the E. coli maltose transport mechanism will lead to a better …


Development Of A Starch-Based Mussel-Mimetic Adhesive Polymer, Jeffrey Kazimir De Kozlowski Jan 2013

Development Of A Starch-Based Mussel-Mimetic Adhesive Polymer, Jeffrey Kazimir De Kozlowski

Open Access Theses

Mussel-mimetic adhesive polymers have gained lots of attention for their strong adhesive strength, moisture resistance, and unique ability to crosslink. These properties are mainly attributed to the high content of catecholic 3,4-dihydroxyphenylalanine (DOPA) in mussel adhesive proteins. While there has been success in creating mussel-mimetic synthetic polymers, less effort has been given to create a renewable, green, biocompatible counterpart. This thesis explores the possibilities of starch-based mussel-mimetic adhesives. Carboxymethyl starch of various molecular weights and degree of substitution was synthesized and subsequent conjugation of dopamine to these polymers by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide was investigated. The polymers suffered from very low substitution (DScatechol …