Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Old Dominion University

Engineering

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 48

Full-Text Articles in Biochemistry

Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter May 2023

Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter

Biomedical Engineering Theses & Dissertations

Pulsed power treatment has been used to induce regulated cell death (RCD) in cells or ablate tumors in animals. A subset of pulsed power as electroporation with high voltage and pulse duration of milliseconds is used for biomedical treatment to induce pores in the plasma membrane of cells. Nanosecond Pulsed Electric Fields (nsPEFs)– an extension of electroporation, uses waveforms with pulse durations on the order of 10-900 nanoseconds. nsPEF treatment has demonstrated intracellular effects for potential biomedical applications. In this work, nsPEF treatment is used to demonstrate changes that affect viability, plasma membrane permeability ROS (Reactive Oxygen Species) in the …


Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu May 2020

Size-Dependent Inhibitory Effects Of Antibiotic Nanocarriers On Filamentation Of E. Coli, Preeyaporn Songkiatisak, Feng Ding, Pavan Kumar Cherukuri, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Multidrug membrane transporters exist in both prokaryotic and eukaryotic cells and cause multidrug resistance (MDR), which results in an urgent need for new and more effective therapeutic agents. In this study, we used three different sized antibiotic nanocarriers to study their mode of action and their size-dependent inhibitory effects against Escherichia coli (E. coli). Antibiotic nanocarriers (AgMUNH–Oflx NPs) with 8.6 × 102, 9.4 × 103 and 6.5 × 105 Oflx molecules per nanoparticle (NP) were prepared by functionalizing Ag NPs (2.4 ± 0.7, 13.0 ± 3.1 and 92.6 ± 4.4 nm) with a monolayer …


Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Electropermeabilization Does Not Correlate With Plasma Membrane Lipid Oxidation, Olga Michel, Andrei G. Pakhomov, Maura Casciola, Jolanta Saczko, Julita Kulbacka, Olga N. Pakhomova Dec 2019

Electropermeabilization Does Not Correlate With Plasma Membrane Lipid Oxidation, Olga Michel, Andrei G. Pakhomov, Maura Casciola, Jolanta Saczko, Julita Kulbacka, Olga N. Pakhomova

Bioelectrics Publications

The permeabilized condition of the cell membrane after electroporation can last minutes but the underlying mechanisms remain elusive. Previous studies suggest that lipid peroxidation could be responsible for the lasting leaky state of the membrane. The present study aims to link oxidation within the plasma membrane of live cells to permeabilization by electric pulses. We have introduced a method for the detection of oxidation by ratiometric fluorescence measurements of BODIPY-C11 dye using total internal reflection fluorescence (TIRF) microscopy, limiting the signal to the cell membrane. CHO-K1 cells were cultured on glass coverslips coated with an electroconductive indium tin oxide (ITO) …


Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier Jun 2019

Modulation Of Biological Responses To 2 Ns Electrical Stimuli By Field Reversal, Esin B. Sözer, P. Thomas Vernier

Bioelectrics Publications

Nanosecond bipolar pulse cancellation, a recently discovered Phenomenon, is modulation of the effects of a unipolar electric pulse exposure by a second pulse of opposite polarity. This attenuation of biological response by reversal of the electric field direction has been reported with pulse durations from 60 ns to 900 ns for a wide range of endpoints, and it is not observed with conventional electroporation pulses of much longer duration (> 100 mu s) where pulses are additive regardless of polarity. The most plausible proposed mechanisms involve the field-driven migration of ions to and from the membrane interface (accelerated membrane discharge). …


Lipid Extraction From Spirulina Sp. And Schizochytrium Sp. Using Supercritical Co2 With Methanol, Shihong Liu, Husam A. Abu Hajar, Guy Riefler, Ben J. Stuart Dec 2018

Lipid Extraction From Spirulina Sp. And Schizochytrium Sp. Using Supercritical Co2 With Methanol, Shihong Liu, Husam A. Abu Hajar, Guy Riefler, Ben J. Stuart

Civil & Environmental Engineering Faculty Publications

Microalgae are one of the most promising feedstocks for biodiesel production due to their high lipid content and easy farming. However, the extraction of lipids from microalgae is energy intensive and costly and involves the use of toxic organic solvents. Compared with organic solvent extraction, supercritical CO2 (SCCO2) has demonstrated advantages through lower toxicity and no solvent-liquid separation. Due to the nonpolar nature of SCCO2, polar organic solvents such as methanol may need to be added as a modifier in order to increase the extraction ability of SCCO2. In this paper, pilot scale lipid …


Investigation Of Electrolytic Flocculation For Microalga Scenedesmus Sp Using Aluminum And Graphite Electrodes, Shihong Liu, Husam A. Abu Hajar, Guy Riefler, Ben J. Stuart Dec 2018

Investigation Of Electrolytic Flocculation For Microalga Scenedesmus Sp Using Aluminum And Graphite Electrodes, Shihong Liu, Husam A. Abu Hajar, Guy Riefler, Ben J. Stuart

Civil & Environmental Engineering Faculty Publications

Electrolytic flocculation using non-sacrificial electrodes with flocculants added was studied on harvesting Scenedesmus sp. In order to optimize the operating conditions of the electrolytic flocculation process and to quantify the amount of flocculants added, aluminum electrodes were first used in the process. It was found that under optimal conditions, the microalgae removal efficiency using aluminum electrodes could reach 98.5%, while 34.2 mg L-1 of aluminum ions were released during the process. Different metal electrodes were also studied, but high microalgae removal efficiency was witnessed only using aluminum electrodes, indicating the influence of the aluminum ion in flocculation. When non-sacrificial …


Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac May 2018

Characterization And Analysis Of Ultrathin Cigs Films And Solar Cells Deposited By 3-Stage Process, Grace Rajan, Krishna Aryal, Shankar Karki, Puruswottam Aryal, Robert W. Collins, Sylvain Marsillac

Electrical & Computer Engineering Faculty Publications

In view of the large-scale utilization of Cu(In,Ga)Se2 (CIGS) solar cells for photovoltaic application, it is of interest not only to enhance the conversion efficiency but also to reduce the thickness of the CIGS absorber layer in order to reduce the cost and improve the solar cell manufacturing throughput. In situ and real-time spectroscopic ellipsometry (RTSE) has been used conjointly with ex situ characterizations to understand the properties of ultrathin CIGS films. This enables monitoring the growth process, analyzing the optical properties of the CIGS films during deposition, and extracting composition, film thickness, grain size, and surface roughness which …


Study Of Abc Membrane Transporters In Single Live Cells, Preeyaporn Songkiatisak Apr 2018

Study Of Abc Membrane Transporters In Single Live Cells, Preeyaporn Songkiatisak

Chemistry & Biochemistry Theses & Dissertations

The multidrug ATP-binding cassette (ABC) membrane transporters (efflux pumps) are found in both prokaryotes and eukaryotes and they can extrude diverse structurally unrelated substrates, such as antibiotics and chemotherapeutic agents out of the cells. The efflux pumps are responsible for multidrug resistance (MDR) and the failure of numerous treatments in infections and cancers. All ABC membrane transporters share a common modular topology containing two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). The underlying molecular mechanisms regarding how the similar structural ABC membrane transporters could selectively extrude a wide variety of substrates and cause MDR, are not yet fully …


Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit Jan 2018

Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit

Bioelectrics Publications

Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1 kHz and 20 MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner …


Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with …


Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova Oct 2017

Activation Of The Phospholipid Scramblase Tmem16f By Nanosecond Pulsed Electric Field (Nspef) Facilitates Its Diverse Cytophysiological Effects, Claudia Muratori, Andrei G. Pakhomov, Elena Gianulis, Jade Meads, Maura Casciola, Peter A. Mollica, Olga N. Pakhomova

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, …


Testing Effectiveness Of Aqueous Phases From Struvite And Hydroxyapatite Mineral Precipitation As Algal Nutrient Sources, Aaron Lyons Apr 2017

Testing Effectiveness Of Aqueous Phases From Struvite And Hydroxyapatite Mineral Precipitation As Algal Nutrient Sources, Aaron Lyons

Virginias Collegiate Honors Council Conference

As interest in algal biofuel grows, the need to explore diverse nutrient sources for growing algae becomes apparent. Struvite and Hydroxyapatite (HAP) were precipitated after flash hydrolysis. The leftover aqueous phase (AP) could serve as nutrients source for algae cultivation and the potential reuse of this waste stream is promising. To test this, 12 bottles of Scenedemus sp., four of Struvite, four of HAP, and four control AM-14 synthetic media were cultivated. 10% of the Phosphorus in the synthetic media was replaced with phosphorous from the struvite AP, and 10% of the nitrogen in the synthetic media was replaced …


Quantifying Cyanide Inhibition Of Nitrification And Developing Cost-Effective Treatment Processes, Germano M. Salazar-Benites Apr 2017

Quantifying Cyanide Inhibition Of Nitrification And Developing Cost-Effective Treatment Processes, Germano M. Salazar-Benites

Civil & Environmental Engineering Theses & Dissertations

All wastewater treatment plants that operate multiple hearth furnaces (MHF) and are required to nitrify must manage the inhibitory effects of free cyanide (HCN, CN-) in the scrubber return flows due to inhibitory impacts on nitrifying bacteria.

HRSD Boat Harbor Treatment Plant (BHTP) a 25 MGD facility consisting of primary and secondary treatment, employs an anoxic selector process for nitrification and partial denitrification and operates a MHF. There is a desire to improve TN removal performance at BHTP due to an annual mass-based bubble permit limit on a combined discharge from seven HRSD plants, and there are no discharge limitations …


Characterization And Analysis Of Real-Time Capillary Convective Pcr Toward Commercialization, Xianbo Qiu, Shiyin Zhang, Lanju Mei, Di Wu, Ke Li, Shengxiang Ge, Xiangzhong Ye, Ningshao Xia, Michael G. Mauk Mar 2017

Characterization And Analysis Of Real-Time Capillary Convective Pcr Toward Commercialization, Xianbo Qiu, Shiyin Zhang, Lanju Mei, Di Wu, Ke Li, Shengxiang Ge, Xiangzhong Ye, Ningshao Xia, Michael G. Mauk

Mechanical & Aerospace Engineering Faculty Publications

Almost all the reported capillary convective polymerase chain reaction (CCPCR) systems to date are still limited to research use stemming from unresolved issues related to repeatability, reliability, convenience, and sensitivity. To move CCPCR technology forward toward commercialization, a couple of critical strategies and innovations are discussed here. First, single- and dual-end heating strategies are analyzed and compared between each other. Especially, different solutions for dual-end heating are proposed and discussed, and the heat transfer and fluid flow inside the capillary tube with an optimized dual-end heating strategy are analyzed and modeled. Second, real-time CCPCR is implemented with light-emitting diode and …


Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu Feb 2017

Biophysical Tools To Study Cellular Mechanotransduction, Ismeel Muhamed, Farhan Chowdhury, Venkat Maruthamuthu

Mechanical & Aerospace Engineering Faculty Publications

The cell membrane is the interface that volumetrically isolates cellular components from the cell's environment. Proteins embedded within and on the membrane have varied biological functions: reception of external biochemical signals, as membrane channels, amplification and regulation of chemical signals through secondary messenger molecules, controlled exocytosis, endocytosis, phagocytosis, organized recruitment and sequestration of cytosolic complex proteins, cell division processes, organization of the cytoskeleton and more. The membrane's bioelectrical role is enabled by the physiologically controlled release and accumulation of electrochemical potential modulating molecules across the membrane through specialized ion channels (e.g., Na, Ca2+, K channels). …


Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey Jan 2017

Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey

Bioelectrics Publications

Biologically, costal cartilage is an understudied tissue type and much is yet to be learned regarding underlying mechanisms related to form and function, and how these relate to disease states, specifically chest wall deformity. Chest wall deformities have a component of inheritance, implying underlying genetic causes; however the complexity of inheritance suggests multiple genetic components. At our Centre investigations were performed on gene expression of key select genes from costal cartilage removed at surgery of patients with chest wall deformity to show high expression of decorin, a key player in collagen fiber formation and growth. Also, the degree of tissue …


Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He Jan 2017

Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He

Computer Science Faculty Publications

Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM …


Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič Jan 2016

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič

Bioelectrics Publications

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1–10 ns, B: 11–100 ns and C: …


In Situ Oh Generation From O2- And H2o2 Plays A Critical Role In Plasma Induced Cell Death, Dehui Xu, Dingxing Liu, Biqing Wang, Chen Chen, Zeyu Chen, Dong Li, Yanjie Yang, Hailan Chen, Michael G. Kong Jan 2015

In Situ Oh Generation From O2- And H2o2 Plays A Critical Role In Plasma Induced Cell Death, Dehui Xu, Dingxing Liu, Biqing Wang, Chen Chen, Zeyu Chen, Dong Li, Yanjie Yang, Hailan Chen, Michael G. Kong

Bioelectrics Publications

Reactive oxygen and nitrogen species produced by cold atmospheric plasma (CAP) are considered to be the most important species for biomedical applications, including cancer treatment. However, it is not known which species exert the greatest biological effects, and the nature of their interactions with tumor cells remains ill-defined. These questions were addressed in the present study by exposing human mesenchymal stromal and LP-1 cells to reactive oxygen and nitrogen species produced by CAP and evaluating cell viability. Superoxide anion (O2-) and hydrogen peroxide (H2O2) were the two major species present in plasma, but their …


Diffuse, Non-Polar Electropermeabilization And Reduced Propidium Uptake Distinguish The Effect Of Nanosecond Electric Pulses, Iurii Semenov, Christian W. Zemlin, Olga N. Pakhomova, Shu Xiao, Andrei G. Pakhomov Jan 2015

Diffuse, Non-Polar Electropermeabilization And Reduced Propidium Uptake Distinguish The Effect Of Nanosecond Electric Pulses, Iurii Semenov, Christian W. Zemlin, Olga N. Pakhomova, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Ca2+ activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher for nsEP (36 kV/cm)than forms EP (0.09 kV/cm) but the respective doses were similar (190 and460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by N10 nM in cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These …


Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok Jan 2014

Dielectric Characterization Of Coastal Cartilage Chondrocytes, Michael W. Stacey, Ahmet C. Sabuncu, Ali Beskok

Bioelectrics Publications

BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy.

METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are …


An Unexpected Particle Oscillation For Electrophoresis In Viscoelastic Fluids Through A Microchannel Constriction, Xinyu Lu, Saurin Patel, Meng Zhang, Sang Woo Joo, Shizhi Qian, Amod Ogale, Xiangchun Xuan Jan 2014

An Unexpected Particle Oscillation For Electrophoresis In Viscoelastic Fluids Through A Microchannel Constriction, Xinyu Lu, Saurin Patel, Meng Zhang, Sang Woo Joo, Shizhi Qian, Amod Ogale, Xiangchun Xuan

Mechanical & Aerospace Engineering Faculty Publications

Electrophoresis plays an important role in many applications, which, however, has so far been extensively studied in Newtonian fluids only. This work presents the first experimental investigation of particle electrophoresis in viscoelastic polyethylene oxide (PEO) solutions through a microchannel constriction under pure DC electric fields. An oscillatory particle motion is observed in the constriction region, which is distinctly different from the particle behavior in a polymer-free Newtonian fluid. This stream-wise particle oscillation continues until a sufficient number of particles form a chain to pass through the constriction completely. It is speculated that such an unexpected particle oscillating phenomenon is a …


Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo Jan 2014

Microfluidic Electrical Sorting Of Particles Based On Shape In A Spiral Microchannel, John Dubose, Xinyu Lu, Saurin Patel, Shizhi Qian, Sang Woo Joo

Mechanical & Aerospace Engineering Faculty Publications

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any …


Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov Jan 2014

Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca2+ after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca2+ level from the nominal 2–5 μM to 2 mM for …


Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2014

Introduction To Fourth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This fourth special electroporation-based technologies and treatments issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the 7th International Workshop and Postgraduate Course on electroporation based technologies and treatments (EBTT 2013) held in Ljubljana, November 17–23, 2013. The 65 participants included faculty members, invited lecturers, special guests, and young scientists, and students from 16 countries. In addition to lectures on the fundamentals, this year’s sessions included talks on microbial inactivation by pulsed electric fields, modeling of intracellular electroporation, electroporation in food processing, and electrotransfer-facilitated DNA vaccination.


Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi Jan 2014

Numerical Study Of Lipid Translocation Driven By Nanoporation Due To Multiple High-Intensity, Ultrashort Electrical Pulses, Viswanadham Sridhara, Ravindra P. Joshi

Electrical & Computer Engineering Faculty Publications

The dynamical translocation of lipids from one leaflet to another due to membrane permeabilization driven by nanosecond, high-intensity (>100 kV/cm) electrical pulses has been probed. Our simulations show that lipid molecules can translocate by diffusion through water-filled nanopores which form following high voltage application. Our focus is on multiple pulsing, and such simulations are relevant to gauge the time duration over which nanopores might remain open, and facilitate continued lipid translocations and membrane transport. Our results are indicative of a N1/2 scaling with pulse number for the pore radius. These results bode well for the use of pulse …


Design And Study Of The Efflux Function Of The Egfp Fused Mexab-Oprm Membrane Transporter In Pseudomonas Aeruginosa Using Spectroscopy, Feng Ding, Kerry J. Lee, Ardeschir Vahedi-Faridi, Hiroshi Yoneyama, Christopher J. Osgood, Xiao-Hong Nancy Xu Jan 2014

Design And Study Of The Efflux Function Of The Egfp Fused Mexab-Oprm Membrane Transporter In Pseudomonas Aeruginosa Using Spectroscopy, Feng Ding, Kerry J. Lee, Ardeschir Vahedi-Faridi, Hiroshi Yoneyama, Christopher J. Osgood, Xiao-Hong Nancy Xu

Biological Sciences Faculty Publications

Multidrug membrane transporters (efflux pumps) can selectively extrude a variety of structurally and functionally diverse substrates (e.g., chemotoxics, antibiotics), leading to multidrug resistance (MDR) and ineffective treatment of a wide variety of diseases. In this study, we have designed and constructed a fusion gene (egfp-mexB) of N-terminal mexB with C-terminal egfp, inserted it into a plasmid vector (pMMB67EH), and successfully expressed it in the Δ MexB (MexB deletion) strain of Pseudomonas aeruginosato create a new strain that expresses MexA-(EGFP-MexB)-OprM. We characterized the fusion gene using gel electrophoresis and DNA sequencing, and determined its expression in live …


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Primary Pathways Of Intracellular Ca2+ Mobilization By Nanosecond Pulsed Electric Field, Iurii Semenov, Shu Xiao, Andrei G. Pakhomov Jan 2013

Primary Pathways Of Intracellular Ca2+ Mobilization By Nanosecond Pulsed Electric Field, Iurii Semenov, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Permeabilization of cell membranous structures by nanosecond pulsed electric field (nsPEF) triggers transient rise of cytosolic Ca2+ concentration ([Ca2+]i), which determines multifarious downstream effects. By using fast ratiometric Ca2+ imaging with Fura-2, we quantified the external Ca2+ uptake, compared it with Ca2+ release from the endoplasmic reticulum (ER), and analyzed the interplay of these processes. We utilized CHO cells which lack voltage-gated Ca2+ channels, so that the nsPEF-induced [Ca2+]i changes could be attributed primarily to electroporation. We found that a single 60-ns pulse caused fast [Ca2+]i increase …