Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Biochemistry

Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li Dec 2016

Tetrameric Photosystem I: From Initial Discovery And Characterization In Chroococcidiopsis Sp. Ts-821 To Exploration Of Its Distribution And Understanding Of Its Significance In Cyanobacteria, Meng Li

Doctoral Dissertations

Photosystem I (PSI) forms trimeric complexes in most characterized cyanobacteria. We had reported the tetrameric form of PSI in the unicellular cyanobacterium, Chroococcidiopsis sp. TS-821 (TS-821). Using Cryo-EM, a 3D model of the PSI tetramer structure at 11.5 [Angstrom] resolution was obtained and a 2D map within the membrane plane of at 6.1 [Angstrom]. In contrast to the three-fold symmetry in trimeric PSI crystal structure from T. elongatus, two different inter-monomer interactions involving PsaLs are found in the PSI tetramer. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria. Additionally, this tetrameric …


Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan Sep 2016

Tuning Into Toxins And Channels: The Characterizations Of Tv1 And A Human Cardiac Sodium Channel Voltage-Sensor Domain, Mohammed H. Bhuiyan

Dissertations, Theses, and Capstone Projects

In nature, peptide toxins are an abundant resource, produced both by marine and terrestrial organisms. A major target of these peptide toxins is the group of the highly important voltage-gated ion channels. Due to their high specificity and affinity, peptide toxins have been used for over a decade in discovery and characterization of voltage-gated ion channels. Although peptide toxins have been extensively characterized structurally, the structural characterization of eukaryotic voltage-gated sodium channels has seen much less progress, due to their large size and high hydrophobicity. Voltage-gated sodium channels play crucial roles in many physiological processes, and when these processes are …


Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed Sep 2016

Specific Binding Affinity Of The Non-Catalytic Domain Of Eukaryotic Like Type Ib Topoisomerase Of Vaccinia Virus, Benjamin R. Reed

Dissertations, Theses, and Capstone Projects

Topoisomerases are ubiquitous proteins that alter supercoiling in double stranded DNA (dsDNA) during transcription and replication and. vaccinia and the closely related poxvirus variola virus, at 314 amino acids in length, encode the smallest of the type I topoisomerases(TopIB). TopIB is a two domain protein that recognizes the sequence 5’-T/CCCTT, cleaves at the 3’-end and relaxes supercoiling through rotation. The C-terminal domain (CTD) alone contains the catalytic activity and specificity. Deletion of the N-terminal domain results in a greatly reduced rate of relaxation and rapid dissociation. Biochemical data suggests that the N-terminal domain (NTD) is important for pre-cleavage binding and …


Insights Into Chibby's Structural Elements And Their Interplay In Wnt Signaling Protein-Protein Interactions, Ryan C Killoran Aug 2016

Insights Into Chibby's Structural Elements And Their Interplay In Wnt Signaling Protein-Protein Interactions, Ryan C Killoran

Electronic Thesis and Dissertation Repository

The Wnt/b-catenin signaling pathway is critical to embryonic development and adult tissue homeostasis. Mutations to Wnt signaling components can cause dysregulation of the pathway, leading to various human diseases such as cancer. The partially disordered protein Chibby (Cby) is a conserved nuclear protein that acts as an antagonist in the Wnt/b-catenin signaling pathway. Cby’s antagonism is accomplished via two mechanisms. First, by competing with the Tcf/Lef family of transcription factors, Cby abrogates the b-catenin-mediated transcription of Wnt signaling genes. Moreover, upon phosphorylation on serine 20 by the kinase Akt, Cby forms a complex with the protein 14-3-3 to facilitate the …


Pinpointing The Molecular Basis For Metal Ion Effects On Plasminogen Activator Inhibitor-1 (Pai-1), Joel Cullen Bucci Aug 2016

Pinpointing The Molecular Basis For Metal Ion Effects On Plasminogen Activator Inhibitor-1 (Pai-1), Joel Cullen Bucci

Doctoral Dissertations

Plasminogen activator inhibitor type-1 (PAI-1) specifically inhibits the proteases tissue type plasminogen activator and urokinase plasminogen activator to control the activation of fibrinolysis. Vitronectin interacts with PAI-1 primarily through the somatomedin B (SMB) domain to stabilize and localize PAI-1 to sites of injury. Our laboratory observed that transition metals such as copper2+ have VN dependent, reciprocal effects on how long PAI-1 remains active. We aim to determine the molecular basis for effects of copper2+ on PAI-1 activity. We employed a computational algorithm (MUG) to predict metal binding clusters, and introduced mutations hypothesized to create metal binding deficiency. We …


Structure And Function Relationships Between Atpase Family, Aaa Domain Containing Protein 5, Proliferating Cell Nuclear Antigen, And Usp1-Associated Factor 1, Tam T. Bui Jun 2016

Structure And Function Relationships Between Atpase Family, Aaa Domain Containing Protein 5, Proliferating Cell Nuclear Antigen, And Usp1-Associated Factor 1, Tam T. Bui

Electronic Thesis and Dissertation Repository

The genome is constantly damaged by intracellular and extracellular factors. At sites of DNA damage, replication forks are stalled, leading monoubiquitination of proliferating cell nuclear antigen (PCNA). Monoubiquitination of PCNA promote the switch from regular high-fidelity polymerases to Y-family polymerases for bypassing damaged DNA. Prolonged replication by these polymerases may lead to increased mutagenesis, so tight regulation of this process is required. ATAD5 recruits a deubiquitinase complex consisting of ubiquitin-specific protease 1 (USP1) and USP1-associated factor 1 (UAF1) to control PCNA monoubiquitination. The mechanism by which ATAD5 and PCNA interact has been previously unexplored. We show through biochemical and structural …


Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas Jun 2016

Interaction Of Spliceosomal U2 Snrnp Protein P14 With Its Branch Site Rna Target, William Perea Vargas

Dissertations, Theses, and Capstone Projects

Newly transcribed precursor messenger RNA (pre-mRNA) molecules contain coding sequences (exons) interspersed with non-coding intervening sequences (introns). These introns must be removed in order to generate a continuous coding sequence prior to translation of the message into protein. The mechanism through which these introns are removed is known as pre-mRNA splicing, a two-step reaction catalyzed be a large macromolecular machine, the spliceosome, located in the nucleus of eukaryotic cells. The spliceosome is a protein-directed ribozyme composed of small nuclear RNAs (snRNA) and hundreds of proteins that assemble in a very dynamic process. One of these snRNAs, the U2 snRNA, is …


Purification Of A Bacteriophage Protein Involved In Host Range Specificity, Alec Brown May 2016

Purification Of A Bacteriophage Protein Involved In Host Range Specificity, Alec Brown

Honors Projects

The Escherichia coli ferric hydroxamate uptake receptor FhuA serves as the receptor for ferrichrome-Fe(III) complexes, with TonB protein energizing the active transport of the complex. The FhuA receptor is exploited by a variety of bacteriophages as a conduit into the cell. Interestingly, certain of these phages carry a gene called “Cor”, the product of which, when cloned and expressed from a plasmid, blocks transport by FhuA. In the present study, components of the cor gene from the bacteriophage ϕ80 were used to construct an IPTG-inducible MalE-Cor-His6 fusion protein, which allowed for affinity purification of the Cor protein. At 61 residues …


Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel May 2016

Engineering A Mutation In The Heparin Binding Pocket Of The Human Fibroblast Growth Factor, Roshni Patel

Chemistry & Biochemistry Undergraduate Honors Theses

Fibroblast growth factors (FGFs) are family of proteins that belong to a group of growth factors that are found in mammals and play an important role in angiogenesis, differentiation, organogenesis, and tissue repair. In summary, their main functionality is involved in cell division and proliferation. Because FGFs plays such a vital role in cell proliferation, they are mainly involved in the process of wound healing and injuries. FGF binds to its ligand, heparin—a heavily sulfated glycosaminoglycan. The binding of heparin to FGF occurs through electrostatic interactions, specifically between the negatively charged sulfate groups on heparin and positively charged residues such …


Interaction Of Seca With Unfolded Polypeptides, Aliakbar Khalili Yazdi Apr 2016

Interaction Of Seca With Unfolded Polypeptides, Aliakbar Khalili Yazdi

Electronic Thesis and Dissertation Repository

The evolutionarily well-conserved SecA is essential for bacterial post-translational translocation. SecA uses the energy of ATP to drive preproteins through the membrane pore. The functional oligomeric state of SecA and the molecular basis for recognition of unfolded polypeptides by SecA are major unresolved questions that must be addressed to understand preprotein targeting and the molecular mechanics of SecA-mediated translocation. This thesis will address three aspects of these questions. First, the role of unstructured termini in the oligomerization and function of various SecA constructs was elucidated. By re-examining the tetramerization of a truncated SecA construct (SecA-N68), it was shown that the …


The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto Mar 2016

The Application Of Hydrogen/Deuterium Exchange And Covalent Labeling Coupled With Mass Spectrometry To Examine Protein Structure, Nicholas B. Borotto

Doctoral Dissertations

Thorough insight into a protein’s structure is necessary to understand how it functions and what goes wrong when it malfunctions. The structure of proteins, however, is not easily analyzed. The analysis must take place under a narrow range of conditions or risk perturbing the very structure being probed. Furthermore, the wide diversity in size and chemistry possible in proteins significantly complicates this analysis. Despite this numerous methods have been developed in order to analyze protein structure. In this work, we demonstrate that mass spectrometry (MS)-based techniques are capable of characterizing the structure of particularly challenging proteins. This is done through …


Calcineurin: From Activation To Inhibition, Erik C. Cook Jan 2016

Calcineurin: From Activation To Inhibition, Erik C. Cook

Theses and Dissertations--Molecular and Cellular Biochemistry

Calcineurin is a Ser/Thr phosphatase whose function is implicated in critical physiological processes such as immune system activation, fetal heart development, and long-term depression in neurons. Calcineurin has been implicated in the progression of Alzheimer’s disease and cardiac hypertrophy. It is not well understood how calcineurin is activated on a molecular level by Ca2+ and its activating protein calmodulin. Previous data from our lab show that calmodulin interaction induces the folding of the intrinsically disordered regulatory domain of calcineurin in two discrete and distant regions into α-helical conformations and that this folding is critical for complete activation of calcineurin. …


Probing Allosteric, Partial Inhibition Of Thrombin Using Novel Anticoagulants, Stephen S. Verespy Iii Jan 2016

Probing Allosteric, Partial Inhibition Of Thrombin Using Novel Anticoagulants, Stephen S. Verespy Iii

Theses and Dissertations

Thrombin is the key protease that regulates hemostasis; the delicate balance between procoagulation and anticoagulation of blood. In clotting disorders, like deep vein thrombosis or pulmonary embolism, procoagulation is up-regulated, but propagation of clotting can be inhibited with drugs targeting the proteases involved, like thrombin. Such drugs however, have serious side effects (e.g., excessive bleeding) and some require monitoring during the course of treatment. The reason for these side effects is the mechanism by which the drugs’ act. The two major mechanisms are direct orthosteric and indirect allosteric inhibition, which will completely abolish the protease’s activity. Herein we sought an …


A Pipeline For Creation Of Genome-Scale Metabolic Reconstructions, Shaun W. Norris Jan 2016

A Pipeline For Creation Of Genome-Scale Metabolic Reconstructions, Shaun W. Norris

Theses and Dissertations

The decreasing costs of next generation sequencing technologies and the increasing speeds at which they work have lead to an abundance of 'omic datasets. The need for tools and methods to analyze, annotate, and model these datasets to better understand biological systems is growing. Here we present a novel software pipeline to reconstruct the metabolic model of an organism in silico starting from its genome sequence and a novel compilation of biological databases to better serve the generation of metabolic models. We validate these methods using five Gardnerella vaginalis strains and compare the gene annotation results to NCBI and the …


Understanding Dna Condensation By Low Generation (G0/G1) And Zwitterionic G4 Pamam Dendrimers, Min An Jan 2016

Understanding Dna Condensation By Low Generation (G0/G1) And Zwitterionic G4 Pamam Dendrimers, Min An

Theses and Dissertations--Chemistry

Cationic polymers have shown potential as gene delivery vectors due to their ability to condense DNA and protect it from cellular and restriction nucleases. Dendrimers are hyperbranched macromolecules with precisely defined molecular weights and highly symmetric branches stemming from a central core. The nanosize, tunable surface chemistries and ease of surface functionalization has made dendrimers an attractive alternative to conventional linear polymers for DNA delivery applications. The commercially available, cationic dendrimer poly(amidoamine) or PAMAM is the most widely studied dendrimer for use as a gene delivery vector. The aim of this dissertation is to provide an increased understanding of the …