Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry

Caulobacter Clpxp Adaptor Popa’S Domain Interactions In The Adaptor Hierarchy Of Ctra Degradation, Thomas P. Scudder Nov 2023

Caulobacter Clpxp Adaptor Popa’S Domain Interactions In The Adaptor Hierarchy Of Ctra Degradation, Thomas P. Scudder

Masters Theses

The degradation and recycling of protein is a process essential for the maintenance and regulation of cellular function. More specifically, in Caulobacter crescentus, the ClpXP protease is responsible for driving progression through the cell cycle and protein quality control. This protease utilizes three known adaptors to selectively degrade proteins that initiate different stages of development. This thesis will elaborate on the specific binding interface on one of these adaptors, PopA, with another, RcdA, and focus in on specific residues on PopA and investigate their roles in adaptor binding and delivery of CtrA, the master regulator of Caulobacter. Finally, I …


Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage Mar 2022

Screening For Binding Partners And Protein-Protein Interactions Of A Fungal Transcription Factor- Xdr1, Nishadi Punsara Gallala Gamage

Masters Theses

Clarireedia spp. (formerly Sclerotinia homoeocarpaF.T. Bennett) is the causal agent dollar spot, the most economically important turfgrass disease impacting golf courses in North America. The most effective strategy for dollar spot control is repeated application of multiple classes of fungicides. However, reliance on chemical application has led to resistance to four classes of fungicides as well as multidrug resistance (MDR). Fungi are known to detoxify xenobiotics, like fungicides, through transcriptional regulation of three detoxification phases: modification, conjugation and secretion. Little is known, however, of the protein-protein interactions that facilitate these pathways. Following next-generation RNA sequencing of Clarireedia spp., a …


Feronia-Related Receptor Kinase 7 And Feronia And Their Role In Receiving And Transducing Signals, David Vyshedsky Oct 2018

Feronia-Related Receptor Kinase 7 And Feronia And Their Role In Receiving And Transducing Signals, David Vyshedsky

Masters Theses

Receptor kinases (RKs) are transmembrane proteins that have been shown to regulate an array of important processes in A. thaliana, including polar cell growth, plant reproduction, and many other plant growth processes. In this thesis, I examine RECEPTOR KINASE 7 (RK7) and FERONIA (FER), two closely related transmembrane RKs, and their effects on plant reproduction. The RK7 gene when knocked out (rk7) in conjunction with FER resulted in delayed plant growth, decreased seed yield, and a lower percentage of the seeds germinating as compared to the single FER knockout. Transgenic plants with GUS reporter driven by RK7 promoter …


Expression And Purification Of Human Lysosomal Β-Galactosidase From Pichia Pastoris, Sarah E. Tarullo Nov 2014

Expression And Purification Of Human Lysosomal Β-Galactosidase From Pichia Pastoris, Sarah E. Tarullo

Masters Theses

Lysosomal storage diseases are genetically inherited diseases caused by the dysfunction of lysosomal enzymes. In a normal cell, lysosomal enzymes cleave specific macromolecules as they are transported to the lysosome. However, in diseased cells, these lysosomal enzymes are either absent or malfunctioning, causing macromolecular substrates to accumulate, becoming toxic to the cell. Over fifty lysosomal storage diseases have been identified, collectively occurring in one out of 7,700 live births. We investigated the lysosomal enzyme β-galactosidase (β-gal). In order to study the biochemistry and enzymology of this protein a robust expression system was needed. The GLB1 gene has been inserted into …


Examining The Functional Consequences Of The Flexibility Of Aminoglycoside Phosphotransferase (3’)-Iiia, Katelyn Dawn Rosendall May 2014

Examining The Functional Consequences Of The Flexibility Of Aminoglycoside Phosphotransferase (3’)-Iiia, Katelyn Dawn Rosendall

Masters Theses

The use of aminoglycoside antibiotics began in 1940 with the discovery of streptomycin. The overuse and misuse of antibiotics has resulted in prevalent cases of antibiotic resistance. The most common source of aminoglycoside resistance is the presence of enzymes that covalently modify the antibiotics at specific locations. One such enzyme, APH(3′)-IIIa [the aminoglycoside phosphotransferase three prime three a] conveys resistance by transferring the γ-phosphate [gamma phosphate] from ATP [adenosine triphosphate] onto the 3′ [three prime] carbon of the aminoglycoside antibiotic sugar ring. APH(3′)-IIIa has been shown to be flexible in solution and this flexibility is proposed to be responsible for …


Examining The Roles Of Pstoc75 Potra Domains In Chloroplast Protein Import, Richard Franklin Simmerman Aug 2011

Examining The Roles Of Pstoc75 Potra Domains In Chloroplast Protein Import, Richard Franklin Simmerman

Masters Theses

During chloroplast formation via endosymbiosis most of the plastid genome was transferred to the host nuclear genome. Genomic and proteomic analysis suggests that >95% of the original plastid proteome is now encoded in the nucleus, and these now cytosolically fabricated proteins require a post-translational transport pathway back into the organelle. This process is not well understood, yet it has been shown to involve translocons at the outer and inner envelope of the chloroplast membranes (TOC & TIC). These translocons interact with a cleavable N-terminal extension of between 20 and 100 residues on chloroplast-bound precursor proteins known as the transit-peptide. Precursor …


Structural And Functional Analysis Of Toc75, Ashita Mukul Dave Dec 2010

Structural And Functional Analysis Of Toc75, Ashita Mukul Dave

Masters Theses

The majority of chloroplast proteins are nuclear-encoded and post-translationally imported into the chloroplast. These newly imported proteins are translocated from the cytosolic compartment to the stroma by the Translocons of the Outer/Inner membranes of Chloroplast (TOC/TIC). In order to understand protein transport across the chloroplast outer membrane, it is crucial to investigate the structure and function of these complexes. The TOC complex is composed of the beta-barrel channel protein Toc75 and the GTPase receptors Toc34 and Toc159.

Toc75 is a member of the OMP85 (Outer Member Protein, 85 kDa) superfamily. Other proteins of the OMP85 superfamily also exist in Gram-negative …