Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Plant Sciences

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 82

Full-Text Articles in Biochemistry

Ranchsatdb: A Genome-Wide Simple Sequence Repeat (Ssr) Markers Database Of Livestock Species For Mutant Germplasm Characterization And Improving Farm Animal Health, Naveen Duhan, Simardeep Kaur, Rakesh Kaundal Jul 2023

Ranchsatdb: A Genome-Wide Simple Sequence Repeat (Ssr) Markers Database Of Livestock Species For Mutant Germplasm Characterization And Improving Farm Animal Health, Naveen Duhan, Simardeep Kaur, Rakesh Kaundal

Plants, Soils and Climate Student Research

Microsatellites, also known as simple sequence repeats (SSRs), are polymorphic loci that play an important role in genome research, animal breeding, and disease control. Ranch animals are important components of agricultural landscape. The ranch animal SSR database, ranchSATdb, is a web resource which contains 15,520,263 putative SSR markers. This database provides a comprehensive tool for performing end-to-end marker selection, from SSRs prediction to generating marker primers and their cross-species feasibility, visualization of the resulting markers, and finding similarities between the genomic repeat sequences all in one place without the need to switch between other resources. The user-friendly online interface …


Alterations In C:N Ratio To Understand Plant Metabolic Pathways In Response To Pressure From Goat Grazing In The Invasive Species: Rhamnus Cathartica, Vivian Marchan Jan 2023

Alterations In C:N Ratio To Understand Plant Metabolic Pathways In Response To Pressure From Goat Grazing In The Invasive Species: Rhamnus Cathartica, Vivian Marchan

2023 Ignite the Spark Outstanding Undergraduate Research and Scholarship

The high fecundity and high germination rates of Rhamus cathartica serves the species to out-compete regional plant native species. Its high abundance in deciduous forest ecosystems forces species that are unable to utilize R. cathartica as a food source to migrate to areas of lower density, further contributing to the decline in regional biodiversity. Bare soil conditions left as the result of the high concentration of Nitrogen in senesced leaves and leaf litter, cause further amplification of the migration of non-plant species to areas of lower R. cathartica density. Nitrogen is essential to primary and secondary metabolism, thus minimizing the …


Structural Files For The Etr1 Ethylene-Receptor Dimer Based On Computational Modeling, Beenish J. Azhar, Safdar Abbas, Sitwat Aman, Maria V. Yamburenko, Wei Chen, Lena Muller, Buket Uzun, David A. Jewell, Jian Dong, Samina N. Shakeel, Georg Groth, Brad M. Binder, Gevorg Grigoryan, G. Eric Schaller Jan 2023

Structural Files For The Etr1 Ethylene-Receptor Dimer Based On Computational Modeling, Beenish J. Azhar, Safdar Abbas, Sitwat Aman, Maria V. Yamburenko, Wei Chen, Lena Muller, Buket Uzun, David A. Jewell, Jian Dong, Samina N. Shakeel, Georg Groth, Brad M. Binder, Gevorg Grigoryan, G. Eric Schaller

Dartmouth Scholarship

Structural models for the ETR1 homodimer were generated with AlphaFold-Multimer. Coppers were modeled under two potential coordinations involving Cys65 and His69 of the ETR1 homodimer, one in which the two coppers are bound independently and do not share an interaction with each other, and another where they are closely bonded.

See the following publication for details: Azhar, B.J., Abbas, S., Aman, S., Yamburenko, M.V., Chen, W., Müller, L., Uzun, B., Jewell, D.A., Dong, J., Shakeel, S.N., Groth, G., Binder, B.M., Grigoryan, G., Schaller, G.E. (2023) Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc. Natl. Acad. …


Physicochemical Analysis Of Cold Brew And Hot Brew Peaberry Coffee, Evan T. Schwarzmann, Marlena P. Washington, Niny Z. Rao Oct 2022

Physicochemical Analysis Of Cold Brew And Hot Brew Peaberry Coffee, Evan T. Schwarzmann, Marlena P. Washington, Niny Z. Rao

College of Life Sciences Faculty Papers

Peaberry coffee is the result of a natural mutation of coffee beans, and they make up only about 5–7% of coffee crops. A typical coffee cherry contains two seeds that are developed against each other, resulting in the distinctive half-rounded shape of coffee beans. However, failing to fertilize both ovules of one of the seeds or failure in endosperm development can cause only one of the seeds to develop, resulting in smaller, denser beans with a more domed shape. Peaberry coffees are said to be sweeter, lighter, and more flavorful since the peaberry beans receive all nutrients from the coffee …


Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He Jun 2022

Increasing The Resilience Of Plant Immunity To A Warming Climate, Jong Hum Kim, Christian Castroverde, Shuai Huang, Chao Li, Richard Hilleary, Adam Seroka, Reza Sohrabi, Diana Medina-Yerena, Bethany Huot, Jie Wang, Sharon Marr, Mary Wildermuth, Tao Chen, John Macmicking, Sheng Yang He

Biology Faculty Publications

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations …


Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Computational Prediction Of Mutagenesis In Glycine Max Rubisco Activase Monomer For Increased Thermal Stability, Catherine B. Emanuel, Hamza Haq '21, Vasanth Ramesh '21, Jaden Wang '21, Angela Ahrendt, Sarah Stainbrook Jun 2021

Computational Prediction Of Mutagenesis In Glycine Max Rubisco Activase Monomer For Increased Thermal Stability, Catherine B. Emanuel, Hamza Haq '21, Vasanth Ramesh '21, Jaden Wang '21, Angela Ahrendt, Sarah Stainbrook

Student Publications & Research

No abstract provided.


Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner Mar 2021

Lighting The Way: Recent Insights Into The Structure And Regulation Of Phototropin Blue Light Receptors, Jaynee E. Hart, Kevin H. Gardner

Publications and Research

The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two bluelight- sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made …


Sterol Biosynthesis In Four Green Algae: A Bioinformatic Analysis Of The Ergosterol Versus Phytosterol Decision Point, Adam Voshall, Nakeirah T.M. Christie, Suzanne L. Rose, Maya Khasin, James L. Van Etten, Jennifer E. Markham, Wayne R. Riekhof, Kenneth Nickerson Jan 2021

Sterol Biosynthesis In Four Green Algae: A Bioinformatic Analysis Of The Ergosterol Versus Phytosterol Decision Point, Adam Voshall, Nakeirah T.M. Christie, Suzanne L. Rose, Maya Khasin, James L. Van Etten, Jennifer E. Markham, Wayne R. Riekhof, Kenneth Nickerson

School of Biological Sciences: Faculty Publications

Animals and fungi produce cholesterol and ergosterol, respectively, while plants produce the phytosterols stigmasterol, campesterol, and bsitosterol in various combinations. The recent sequencing of many algal genomes allows the detailed reconstruction of the sterol metabolic pathways. Here, we characterized sterol synthesis in two sequenced Chlorella spp., the free-living C. sorokiniana, and symbiotic C. variabilis NC64A. Chlamydomonas reinhardtii was included as an internal control and Coccomyxa subellipsoidea as a plant-like outlier. We found that ergosterol was the major sterol produced by Chlorella spp. and C. reinhardtii, while C. subellipsoidea produced the three phytosterols found in plants. In silico analysis …


Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis Nov 2020

Dissecting The Regulatory Network Of Sphingolipid Biosynthesis In Plants, Ariadna Gonzalez-Solis

Department of Biochemistry: Dissertations, Theses, and Student Research

Sphingolipids are a diverse group of lipids recognized as important components of cellular membranes and regulators of processes during development and in response to environmental stresses. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is a primary regulatory point for homeostasis. ORM proteins have been identified as negative regulators of SPT activity, however the mechanistic details of the regulation are only beginning to be understood. In this work, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis thaliana. Furthermore, the study of a structural ORM1 variant provided information about a transmembrane …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Fungicide Sensitivity Of Sclerotinia Sclerotiorum Isolates Selected From Five Different States That Use Different Fungicide Treatments, Cristian Wulkop Gil Apr 2020

Fungicide Sensitivity Of Sclerotinia Sclerotiorum Isolates Selected From Five Different States That Use Different Fungicide Treatments, Cristian Wulkop Gil

UCARE Research Products

Sclerotinia sclerotiorum is a plant pathogenic fungus that causes a disease called white mold that can infect more than 450 plant species including soybeans, dry beans, green beans, canola, and sunflower. This pathogen is capable of up to $252M in losses every year (U.S. Canola Association, 2014). Fungicides are widely used in developed agricultural systems to control disease. However, resistance to the most effective fungicides has emerged and spread in pathogen populations and there have been multiple reports of S. sclerotiorum isolates becoming resistant to certain fungicides. Since different fields in different states use different fungicide treatments on plants and …


It’S Not Easy Being Green: A Study Of The Chemical Phenology Of The Eastern Hemlock Throughout A Growing Season, Nick Houseman, Evan Preisser May 2019

It’S Not Easy Being Green: A Study Of The Chemical Phenology Of The Eastern Hemlock Throughout A Growing Season, Nick Houseman, Evan Preisser

Senior Honors Projects

Phenology is the study of seasonally timed developmental events that are driven by environmental cues. Phenolic compounds and terpenoids are the two main classes of secondary metabolites present in conifer needles, and speaking generally, they correlate with needle age. Understanding the phenology of secondary metabolites is important, since variation in these compounds can affect a tree’s resistance to pest and pathogen attack. Terpenoids function in a wide array of ecological processes vital to conifer survival, including regulating forest dynamics through allelopathic inhibition of seed germination, altering rates of soil nutrient cycling and nitrification, and conferring resistance to pathogenic fungi and …


Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed Mar 2019

Purification And Characterization Of A Nonspecific Lipid Transfer Protein 1 (Nsltp1) From Ajwain (Trachyspermum Ammi) Seeds, Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M. Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed

Pharmacy Faculty Articles and Research

Ajwain (Trachyspermum ammi) belongs to the family Umbelliferae, is commonly used in traditional, and folk medicine due to its carminative, stimulant, antiseptic, diuretic, antihypertensive, and hepatoprotective activities. Non-specific lipid transfer proteins (nsLTPs) reported from various plants are known to be involved in transferring lipids between membranes and in plants defense response. Here, we describe the complete primary structure of a monomeric non-specific lipid transfer protein 1 (nsLTP1), with molecular weight of 9.66 kDa, from ajwain seeds. The nsLTP1 has been purified by combination of chromatographic techniques, and further characterized by mass spectrometry, and Edman degradation. The ajwain nsLTP1 …


Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté Nov 2018

Molecular Fossils From Phytoplankton Reveal Secular Pco2 Trend Over The Phanerozoic, Caitlyn R. Witkowski, Johan W. H. Weijers, Brian S. Blais, Stefan Schouten, Jaap S. Sinninghe Damsté

Science and Technology Department Faculty Journal Articles

Past changes in the atmospheric concentration of carbon dioxide (PCO2) have had a major impact on earth system dynamics; yet, reconstructing secular trends of past PCO2 remains a prevalent challenge in paleoclimate studies. The current long-term PCO2reconstructions rely largely on the compilation of many different proxies, often with discrepancies among proxies, particularly for periods older than 100 million years (Ma). Here, we reconstructed Phanerozoic PCO2 from a single proxy: the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) that increases as PCO2 increases. This concept has been widely applied to alkenones, but here, we …


Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston Jun 2018

Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston

Department of Biochemistry: Faculty Publications

Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane …


Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra Oct 2017

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra

Biology Faculty Publications & Presentations

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream …


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at …


Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka Jul 2017

Hydrogenation Of Organic Matter As A Terminal Electron Sink Sustains High Co2:Ch4 Production Ratios During Anaerobic Decomposition, Rachel M. Wilson, Malak M. Tfaily, Virginia I. Rich, Jason K. Keller, Scott D. Bridgham, Cassandra Medvedeff Zalman, Laura Meredith, Paul J. Hanson, Mark Hines, Laurel Pfeifer-Meister, Scott R. Saleska, Patrick Crill, William T. Cooper, Jeff P. Chanton, Joel E. Kostka

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has …


Laurel Wilt Disease: Early Detection Through Canine Olfaction And "Omics" Insights Into Disease Progression, Julian L. Mendel Jun 2017

Laurel Wilt Disease: Early Detection Through Canine Olfaction And "Omics" Insights Into Disease Progression, Julian L. Mendel

FIU Electronic Theses and Dissertations

Laurel wilt disease is a vascular wilt affecting the xylem and water conductivity in trees belonging to the family Lauraceae. The disease was introduced by an invasive species of ambrosia beetle, Xyleborus glabratus. The beetle, together with its newly described fungal symbiont Raffaelea lauricola (pathogenic to host trees), has lead to the devastation and destruction of over 300 million wild redbay trees in southeastern forests. Ambrosia beetles make up a very unique clade of beetle and share a co-evolved obligatory mutualistic relationship with their partner fungi. Rather than consuming host tree material, the beetles excavate galleries or canals …


Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman Apr 2017

Oxidation Of Substituted Catechols At The Air-Water Interface: Production Of Carboxylic Acids, Quinones, And Polyphenols, Elizabeth A. Pillar, Marcelo I. Guzman

Chemistry Faculty Publications

Anthropogenic activities contribute benzene, toluene, and anisole to the environment, which in the atmosphere are converted into the respective phenols, cresols, and methoxyphenols by fast gas-phase reaction with hydroxyl radicals (HO(•)). Further processing of the latter species by HO(•) decreases their vapor pressure as a second hydroxyl group is incorporated to accelerate their oxidative aging at interfaces and in aqueous particles. This work shows how catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol (all proxies for oxygenated aromatics derived from benzene, toluene, and anisole) react at the air-water interface with increasing O3(g) during τc ≈ 1 μs contact time and contrasts their …


Phospholipase Dζ Enhances Diacylglycerol Flux Into Triacylglycerol, Wenyu Yang, Geliang Wang, Jia Li, Philip Bates, Xuemin Wang, Douglas Allen Jan 2017

Phospholipase Dζ Enhances Diacylglycerol Flux Into Triacylglycerol, Wenyu Yang, Geliang Wang, Jia Li, Philip Bates, Xuemin Wang, Douglas Allen

Biology Department Faculty Works

Plant seeds are the primary source of triacylglycerols (TAG) for food, feed, fuel, and industrial applications. As TAG is produced from diacylglycerol (DAG), successful engineering strategies to enhance TAG levels have focused on the conversion of DAG to TAG. However, the production of TAG can be limited by flux through the enzymatic reactions that supply DAG. In this study, two Arabidopsis phospholipase Dζ genes (AtPLDζ1 and AtPLDζ2) were coexpressed in Camelina sativa to test whether the conversion of phosphatidylcholine to DAG impacts TAG levels in seeds. The resulting transgenic plants produced 2% to 3% more TAG as a component of …


Toward Biochemical Conversion Of Lignocellulose On-Farm: Pretreatment And Hydrolysis Of Corn Stover In Situ, Alicia A. Modenbach, Sue E. Nokes, Michael D. Montross, Barbara L. Knutson Jan 2017

Toward Biochemical Conversion Of Lignocellulose On-Farm: Pretreatment And Hydrolysis Of Corn Stover In Situ, Alicia A. Modenbach, Sue E. Nokes, Michael D. Montross, Barbara L. Knutson

Biosystems and Agricultural Engineering Faculty Publications

High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment …


Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal Nov 2016

Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal

Biology Faculty Publications & Presentations

Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed …


Purification Of 26s Proteasomes And Their Subcomplexes From Plants, Richard S. Marshall, David C. Gemperline, Richard D. Vierstra Oct 2016

Purification Of 26s Proteasomes And Their Subcomplexes From Plants, Richard S. Marshall, David C. Gemperline, Richard D. Vierstra

Biology Faculty Publications & Presentations

The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type …


Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau Aug 2016

Countercurrent Chromatography Fractions Of Plant Extracts With Anti-Tuberculosis Activity, Douglas Armstrong, Nathan C. Krause, Drew Frey, J. Brent Friesen, Baojie Wan, Jordan Gunn, Scott Franzblau

Faculty Scholarship – Chemistry

Samples of numerous plant species were received from the southwestern part of the USA, from Richard Spjut, and plant samples were collected here in Illinois. All were extracted with typical solvents, giving crude residues, some of which were subjected to chromatographic methods. Some of the crude residues and some of the fractions were tested for anti-tuberculosis activity and/or antibacterial activity.

In a general way, bioactive natural products are dealt with very well by Liang & Fang. More specifically, the southwestern part of the United States has a large variety of indigenous plants many of which have not been investigated for …


Non-Specific Phospholipase C1 Affects Silicon Distribution And Mechanical Strength In Stem Nodes Of Rice, Huasheng Cao, Lin Zhuo, Yuan Su, Linxiao Sun, Xuemin Wang May 2016

Non-Specific Phospholipase C1 Affects Silicon Distribution And Mechanical Strength In Stem Nodes Of Rice, Huasheng Cao, Lin Zhuo, Yuan Su, Linxiao Sun, Xuemin Wang

Biology Department Faculty Works

Silicon, the second abundant element in the crust, is beneficial for plant growth, mechanical strength, and stress responses. Here we show that manipulation of the non‐specific phospholipase C1, NPC1, alters silicon content in nodes and husks of rice (Oryza sativa). Silicon content in NPC1‐overexpressing (OE) plants was decreased in nodes but increased in husks compared to wild‐type, whereas RNAi suppression of NPC1 resulted in the opposite changes to those of NPC1‐OE plants. NPC1 from rice hydrolyzed phospholipids and galactolipids to generate diacylglycerol that can be phosphorylated to phosphatidic acid. Phosphatidic acid interacts with Lsi6, a silicon transporter that is expressed …


Uplc–Qtof–Ms And Nmr Analyses Of Graviola (Annona Muricata) Leaves, Ingrid De Moraes, Paulo Ribeiro, Flávio Schmidt, Kirley Canuto, Guilherme Zocolo, Edy De Brito, Rensheng Luo, Kristy Richards, Kevin Tran, Robert Smith Mar 2016

Uplc–Qtof–Ms And Nmr Analyses Of Graviola (Annona Muricata) Leaves, Ingrid De Moraes, Paulo Ribeiro, Flávio Schmidt, Kirley Canuto, Guilherme Zocolo, Edy De Brito, Rensheng Luo, Kristy Richards, Kevin Tran, Robert Smith

Chemistry & Biochemistry Faculty Works

No abstract provided.


Membrane Glycerolipidome Of Soybean Root Hairs And Its Response To Nitrogen And Phosphate Availability, Fang Wei, Brian Fanella, Liang Guo, Xuemin Wang Jan 2016

Membrane Glycerolipidome Of Soybean Root Hairs And Its Response To Nitrogen And Phosphate Availability, Fang Wei, Brian Fanella, Liang Guo, Xuemin Wang

Biology Department Faculty Works

Root hairs are tubular extensions of specific root epidermal cells important in plant nutrition and water absorption. To determine membrane glycerolipids in root hairs and roots may differ, as well as their respective response to nutrient availability, this study analyzed the membrane glycerolipid species in soybean root hairs and in roots stripped of root hairs, and their response to nitrogen (N) and phosphate (Pi) supplementation. The ratio of phospholipids to galactolipids was 1.5 fold higher in root hairs than in stripped roots. Under Pi deficiency, the ratio of phospholipids to galactolipids in stripped roots decreased with the greatest decrease found …