Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry

The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull Jan 2022

The Impact Of Plant Secondary Metabolites On Auxin And Cytokinin Signaling, Timothy E. Shull

Theses and Dissertations--Plant and Soil Sciences

Secondary metabolites are a broad class of specialized compounds that mediate plant-environment interactions and mitigate stress. It is increasingly clear that many phenylalanine-derived secondary metabolites are nearly indispensable for plant survival and that plants adjust their growth according to their secondary metabolic outputs. Consequently, many phenylalanine-derived secondary metabolites have influence over hormone activity. For instance, multiple phenylpropanoid intermediates and catecholamines alter the sensitivity of plants to the central hormone auxin, which in concert with cytokinin directs most aspects of plant growth and development. This dissertation reviews previous research on the influence of phenylpropanoid intermediates and catecholamines on plants, with a …


Transcriptional Regulation Of Specialized Metabolites In Arabidopsis Thaliana And Catharanthus Roseus, Craig M. Schluttenhofer Jan 2016

Transcriptional Regulation Of Specialized Metabolites In Arabidopsis Thaliana And Catharanthus Roseus, Craig M. Schluttenhofer

Theses and Dissertations--Plant and Soil Sciences

For millennia humans have utilized plant specialized metabolites for health benefits, fragrances, poisons, spices, and medicine. Valued metabolites are often produced in small quantities and may command high prices. Understanding when and how the plant synthesizes these compounds is important for improving their production. Phytohormone signaling cascades, such as jasmonate (JA) activate or repress transcription factors (TF) controlling expression of metabolite biosynthetic genes. TFs regulating specialized metabolite biosynthetic genes can be manipulated to engineer plants with increased metabolite production.

WRKY transcription factor are known components of both JA signaling cascades and regulation of specialized metabolism. The presence of WRKY binding …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …


Enantioselective Demethylation: The Key To The Nornicotine Enantiomeric Composition In Tobacco Leaf, Bin Cai Jan 2012

Enantioselective Demethylation: The Key To The Nornicotine Enantiomeric Composition In Tobacco Leaf, Bin Cai

Theses and Dissertations--Plant and Soil Sciences

Nicotine and nornicotine are the two main alkaloids that accumulate in Nicotiana tabacum L. (tobacco), and nornicotine is the N-demethylation metabolite of nicotine. Nicotine is synthesized in the root, and probably primarily in the root tip. Both nicotine and nornicotine exist as two isomers that differ from each other by the orientation of H atom at the C-2' position on the pyrrolidine ring. (S)-nicotine is the dominant form in tobacco leaf and the enantiomer fraction of nicotine (EFnic), the fraction of (R)-enantiomer over the total nicotine, is approximately 0.002. Despite considerable efforts to elucidate nicotine and nornicotine …