Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant Dec 2023

Characterization Of Lignin Structural Variability And The Associated Application In Genome Wide Association Studies, Nathan D. Bryant

Doctoral Dissertations

Poplar (Populus sp.) is a promising biofuel feedstock due to advantageous features such as fast growth, the ability to grow on marginal land, and relatively low lignin content. However, there is tremendous variability associated with the composition of biomass. Understanding this variability, especially in lignin, is crucial to developing and implementing financially viable, integrated biorefineries. Although lignin is typically described as being comprised of three primary monolignols (syringyl, guaiacyl, p-hydroxyphenyl), it is a highly irregular biopolymer that can incorporate non-canonical monolignols. It is also connected by a variety of interunit linkages, adding to its complexity. Secondary cell wall …


Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers Jun 2020

Leaf Traits Can Be Used To Predict Rates Of Litter Decomposition, Marc Rosenfield, Jennifer L. Funk, Jason K. Keller, Catrina Clausen, Kimberlee Cyphers

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Strong relationships exist between litter chemistry traits and rates of litter decomposition. However, leaf traits are more commonly found in online trait databases than litter traits and fewer studies have examined how well leaf traits predict litter decomposition rates. Furthermore, while bulk leaf nitrogen (N) content is known to regulate litter decomposition, few studies have explored the importance of N biochemistry fractions, such as protein and amino acid concentration. Here, we decomposed green leaves and naturally senesced leaf litter of nine species representing a wide range of leaf functional traits. We evaluated the ability of traits associated with leaf and …


Another Route For Amino Acid Production?: Reverse Genetic Probing For A Functional Cytosolic Shikimate Pathway In Plants, Gabrielle C. Buck, Joseph Lynch, Natalia Dudareva Aug 2017

Another Route For Amino Acid Production?: Reverse Genetic Probing For A Functional Cytosolic Shikimate Pathway In Plants, Gabrielle C. Buck, Joseph Lynch, Natalia Dudareva

The Summer Undergraduate Research Fellowship (SURF) Symposium

The shikimate pathway is a metabolic pathway that produces the three aromatic amino acids—phenylalanine, tryptophan, and tyrosine—which are essential to human diets and necessary for many plant functions. Consequently, the shikimate pathway is commonly targeted for antibiotic and herbicide strategies as well as genetic engineering in several fields. This pathway is known to be localized in the plastids, or double membrane-bound organelles, of plant cells; however, there is enzymatic evidence of another shikimate pathway in the cell fluid, or cytosol. To determine whether a complete cytosolic shikimate pathway exists, we used a modified gene for the first enzyme of the …