Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen Feb 2021

Using The Marcus Inverted Region And Artificial Cofactors To Create A Charge Separated State In De Novo Designed Proteins, Eskil Me Andersen

Dissertations, Theses, and Capstone Projects

To create an efficient de novo photosynthetic protein it is important to create long lived charge separated states. Achieving stable charge separation leads to an increase in the efficiency of the photosynthetic reaction which in turn leads to higher yields of end products, such as biofuels, electrical charge, or synthetic chemicals. In an attempt to create charge separated states in de novo proteins we hypothesized that we could engineer the free energy gaps in the proteins from excited primary donor (PD) to acceptor (A), and A back to ground state PD such that the forward electron transfer (ET) would be …


Machine Learning And Bioinformatic Insights Into Key Enzymes For A Bio-Based Circular Economy, Japheth E. Gado Jan 2021

Machine Learning And Bioinformatic Insights Into Key Enzymes For A Bio-Based Circular Economy, Japheth E. Gado

Theses and Dissertations--Chemical and Materials Engineering

The world is presently faced with a sustainability crisis; it is becoming increasingly difficult to meet the energy and material needs of a growing global population without depleting and polluting our planet. Greenhouse gases released from the continuous combustion of fossil fuels engender accelerated climate change, and plastic waste accumulates in the environment. There is need for a circular economy, where energy and materials are renewably derived from waste items, rather than by consuming limited resources. Deconstruction of the recalcitrant linkages in natural and synthetic polymers is crucial for a circular economy, as deconstructed monomers can be used to manufacture …


Engineering Of Escherichia Coli 2-Oxoglutarate Dehydrogenase Complex With Mechanistic And Synthetic Goals, Joydeep Chakraborty Aug 2019

Engineering Of Escherichia Coli 2-Oxoglutarate Dehydrogenase Complex With Mechanistic And Synthetic Goals, Joydeep Chakraborty

Dissertations

The Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) compromises multiple copies of three enzymes - 2-oxoglutarate dehydrogenase (E1o), dihydrolipoyl succinyltransferase (E2o), and dihydrolipoyl dehydrogenase (E3). OGDHc is found in the Krebs cycle and catalyzes the formation of the all-important succinyl-Coenzyme A (succinyl-CoA). OGDHc was engineered to understand the catalytic mechanism and optimized for chemical synthetic goals.

Succinyl-CoA formation takes place within the catalytic domain of E2o via a transesterification reaction. The succinyl group from the thiol ester of S8-succinyldihydrolipoyl-E2o is transferred to the thiol group of CoA. Mechanistic studies were designed to investigate enzymatic transthioesterification. His375 and Asp374 was shown to …


Phage Display To Identify Functional Resistance Mutations To Rigosertib, Nedim Filipovic Jan 2017

Phage Display To Identify Functional Resistance Mutations To Rigosertib, Nedim Filipovic

CMC Senior Theses

In vitro protein selection has had major impacts in the field of protein engineering. Traditional screens assay individual proteins for specific function. Selection, however, analyzes a pool of mutants and yields the best variants. Phage display, a successful selection technique, also provides a reliable link between variant phenotype and genotype. It can also be coupled with high throughput sequencing to map protein mutations; potentially highlighting vital mutations in variants. We propose to apply this technique to cancer therapy. RAF, a serine/threonine kinase, is critical for cell regulation in mammals. RAF can be activated by oncogenic RAS, found in over 30% …