Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry

Fabrication And Characterization Of Mesoscale Protein Patterns Using Atomic Force Microscopy (Afm), Pei Gao Jan 2011

Fabrication And Characterization Of Mesoscale Protein Patterns Using Atomic Force Microscopy (Afm), Pei Gao

University of Kentucky Doctoral Dissertations

A versatile AFM local oxidation lithography was developed for fabricating clean protein patterns ranging from nanometer to sub-millimeter scale on octadecyltrichlorosilane (OTS) layer of Si (100) wafer. This protein patterning method can generate bio-active protein pattern with a clean background without the need of the anti-fouling the surface or repetitive rinsing.

As a model system, lysozyme protein patterns were investigated through their binding reactions with antibodies and aptamers by AFM. Polyclonal anti-lysozyme antibodies and anti-lysozyme aptamer are found to preferentially bind to the lysozyme molecules on the edge of a protein pattern before their binding to the interior ones. It …


Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian Jan 2010

Biochemical Characterization Of Human Mismatch Recognition Proteins Mutsα And Mutsβ, Lei Tian

University of Kentucky Doctoral Dissertations

The integrity of an organism's genome depends on the fidelity of DNA replication and the efficiency of DNA repair. The DNA mismatch repair (MMR) system, which is highly conserved from prokaryotes to eukaryotes, plays an important role in maintaining genome stability by correcting base-base mismatches and insertion/deletion (ID) mispairs generated during DNA replication and other DNA transactions. Mismatch recognition is a critical step in MMR. Two mismatch recognition proteins, MutSα (MSH2-MSH6 heterodimer) and MutSβ (MSH2-MSH3 heterodimer), have been identified in eukaryotic cells. MutSα and MutSβ have partially overlapping functions, with MutSα recognizing primarily base-base mismatches and 1-2 nt ID mispairs …


Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons Jan 2010

Explorations In Homeoviscous Adaptation And Mass Spectral Analysis Of Membrane Lipids, Michael Douglas Timmons

University of Kentucky Doctoral Dissertations

The focus of this dissertation is centered on the mass spectral analysis of lipids and changes occurring in keeping with the concept of homeoviscous adaptation [1]. Homeoviscous adaptation is the process of modification of membrane lipids in response to environmental stimuli [1]. Dissertation investigations applied this concept to prokaryotic and eukaryotic organisms, and expanded the perception of environmental factors from exogenous organic solvents to intracellular environment.

The field of lipidomics deals with the analysis of phospholipid and fatty acid components of membranes the changes that occur due to environmental stimuli and their biological significance [2-6]. The high sensitivity of mass …


15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui Jan 2010

15N Solid-State Nmr Detection Of Flavin Perturbation By H-Bonding In Models And Enzyme Active Sites, Dongtao Cui

University of Kentucky Doctoral Dissertations

Massey and Hemmerich proposed that the different reactivities displayed by different flavoenzymes could be achieved as a result of dominance of different flavin ring resonance structures in different binding sites. Thus, the FMN cofactor would engage in different reactions when it had different electronic structures. To test this proposal and understand how different protein sites could produce different flavin electronic structures, we are developing solid-state NMR as a means of characterizing the electronic state of the flavin ring, via the 15N chemical shift tensors of the ring N atoms. These provide information on the frontier orbitals. We propose that …


In Vivo Oxidative Stress In Alzheimer Disease Brain And A Mouse Model Thereof: Effects Of Lipid Asymmetry And The Single Methionine Residue Of Amyloid-Β Peptide, Miranda Lu Bader Lange Jan 2010

In Vivo Oxidative Stress In Alzheimer Disease Brain And A Mouse Model Thereof: Effects Of Lipid Asymmetry And The Single Methionine Residue Of Amyloid-Β Peptide, Miranda Lu Bader Lange

University of Kentucky Doctoral Dissertations

Studies presented in this dissertation were conducted to gain more insight into the role of phospholipid asymmetry and amyloid-β (Aβ)-induced oxidative stress in brain of subjects with amnestic mild cognitive impairment (aMCI) and Alzheimer disease (AD). AD is a largely sporadic, age-associated neurodegenerative disorder clinically characterized by the vast, progressive loss of memory and cognition commonly in populations over the age of ~65 years, with the exception of those with familial AD, which develop AD symptoms as early as ~30 years-old. Neuropathologically, both AD and FAD can be characterized by synapse and neuronal cell loss in conjunction with accumulation of …