Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry

Triclosan Disrupts Immune Cell Function By Depressing Ca2+ Influx Via Acidification Of The Cytoplasm, Suraj Sangroula Aug 2020

Triclosan Disrupts Immune Cell Function By Depressing Ca2+ Influx Via Acidification Of The Cytoplasm, Suraj Sangroula

Electronic Theses and Dissertations

Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits …


Therapeutic Drug Monitoring Of Apixaban Using Chromogenic Kits, Brooke Vogel May 2020

Therapeutic Drug Monitoring Of Apixaban Using Chromogenic Kits, Brooke Vogel

Undergraduate Honors Theses

Apixaban is a novel oral anticoagulant that prevents clotting by directly inhibiting Factor Xa in the coagulation cascade. Due to its different pharmacokinetics, previous standards for testing anticoagulant concentrations are ineffective at measuring apixaban. In this study, Hyphen Biomed Biophen Direct Xa Inhibitor and Biophen Heparin chromogenic kits from Aniara Diagnostica were used along with a NanoDrop™ One/OneC Microvolume UV-Vis Spectrophotometer to see if either of these kits provide acceptable precision and accuracy for the quantification of apixaban in plasma samples, as well as if there is a significant difference in these two kits at varying concentrations of apixaban. …


The Role Of Slc7a11 In Controlling Extracellular And Intracellular Redox Environments Of Lung Fibroblasts - Potential Targets For Intervention In Aging And Idiopathic Pulmonary Fibrosis., Yuxuan Zheng May 2020

The Role Of Slc7a11 In Controlling Extracellular And Intracellular Redox Environments Of Lung Fibroblasts - Potential Targets For Intervention In Aging And Idiopathic Pulmonary Fibrosis., Yuxuan Zheng

Electronic Theses and Dissertations

Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by extracellular matrix deposition by fibroblasts. Aging and oxidative stress increase the susceptibility to IPF. Redox couples, cysteine/cystine (Cys/CySS) and glutathione/glutathione disulfide (GSH/GSSG), and their redox potentials (Eh) quantify oxidative stress. Fibroblasts from old mice maintain more oxidized extracellular Eh(Cys/CySS) than young mice. Microarray shows down-regulation of Slc7a11 potentially mediates this age-related oxidation. Slc7a11 is the key component of system Xc-, an antiporter that imports CySS and exports glutamate. The first aim of this dissertation is to investigate the mechanistic link between Slc7a11 …


Investigating The Toxicology Of Intramuscular Injected Cnt-Ab In Mice Followed By Microwave Hyperthermia., Conner Clark Apr 2020

Investigating The Toxicology Of Intramuscular Injected Cnt-Ab In Mice Followed By Microwave Hyperthermia., Conner Clark

Honors College Theses

The advent of carbon nanotubes (CNTs) has led to a wide range of research in various fields including cancer therapy for targeting specific localized and site-specific treatment. Carbon nanotubes bound to tumor specific antibodies (Ab) offers specific treatment for cancer cells without affecting surrounding tissue. This treatment makes use of infrared absorptive properties of nanotubes to incinerate both the nanotube and its associated tumor in vivo. We seek to affirm the initial results of CNT in cancer therapy by investigating the toxicological effect in mice injected with CNT-Ab followed by microwave hypothermia. After 1-week post-injection, mice were sacrificed followed …


Parp1-Targeted Radiotherapies, Stephen Jannetti Feb 2020

Parp1-Targeted Radiotherapies, Stephen Jannetti

Dissertations, Theses, and Capstone Projects

Poly-ADP-ribosylation reactions were first reported by Chambon in 1963 as enzymatic activity that increases incorporation of ATP in the presence of nicotinamide mononucleotide. In the decades since that publication, Poly(ADP-ribose)polymerase 1 (PARP1) and the PARP family enzymes have been widely studied. PARP enzymes are currently known to play various roles in mammals, including anti-aging processes, interactions with Breast Cancer Suppressor Protein-1 (BRCA1), and DNA damage repair. A significant focus of PARP1 research has been elucidating its role in DNA damage repair. PARP1 is recruited to repair single strand DNA (ssDNA) breaks, which can become double stranded DNA (dsDNA) breaks if …


Novel Post-Translational Modification And Function Of Fus: The Relevance To Amyotrophic Lateral Sclerosis, Alexandra Arenas Jan 2020

Novel Post-Translational Modification And Function Of Fus: The Relevance To Amyotrophic Lateral Sclerosis, Alexandra Arenas

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the preferential death of motor neurons. Approximately 10% of ALS cases are familial and 90% are sporadic. Fused in Sarcoma (FUS) is a ubiquitously expressed RNA binding protein implicated in familial ALS and frontotemporal dementia (FTD). FUS is ubiquitously expressed in cells and has a variety of functions in the nucleus and cytoplasm. FUS mutations in the nuclear localization sequence (NLS) causes mislocalization of FUS in the cytoplasm, where it can undergo liquid-liquid phase separation and become stress granules or protein inclusions. Although FUS inclusion bodies can be found in …


Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco Jan 2020

Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco

Wayne State University Dissertations

Ubiquitin is an 8.5 kDa post-translational modifier involved in essentially all eukaryotic cellular processes. Through a process called ubiquitination, ubiquitinating enzymes chemically attach ubiquitin to substrate proteins to control their fates, resulting in anything from their recruitment into signaling pathways to their proteasomal degradation, with a plethora of possibilities in between. Ubiquitin molecules can also be attached to one another, resulting in poly-ubiquitin chains with various effects depending on the number of ubiquitin molecules and the specific amino acid residues used to link them together. While most poly-ubiquitin in the cell exists as conjugated species, there are also untethered poly-ubiquitin …


Tsrna Involvement In Promoting Breast Cancer Phenotypes, Stephanie Scalia Jan 2020

Tsrna Involvement In Promoting Breast Cancer Phenotypes, Stephanie Scalia

Graduate College Dissertations and Theses

The overall 5-year survival rate for woman diagnosed with breast cancer has increased significantly over the last 20 years. However, prognosis for women with stage IV, metastatic disease remains very poor. Women diagnosed with stage 0-III breast cancer have above an 85% chance of survival over a 5-year period while women diagnosed with stage IV breast cancer have a 5-year survival of less than 30%. A better understanding of the molecular mechanisms driving aggressive breast cancer is essential for the potential discovery of more targeted therapies to increase the survival rates for women diagnosed with stage IV breast cancer.

Previous …


Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer Jan 2020

Antifungal Defense Molecules From Bacterial Symbionts Of North American Trachymyrmex Ants, Georgia Scherer

CMC Senior Theses

Defensive symbioses, in which microbes provide molecular defenses for an animal host, hold great potential as untapped sources of therapeutically useful antibiotics. Fungus-growing ants use antifungal defenses from bacterial symbionts to suppress pathogenic fungi in their nests. Preliminary chemical investigations of symbiotic bacteria from this large family of ants have uncovered novel antifungal molecules with therapeutic potential, such as dentigerumycin and selvamicin.

In this study, the bacterial symbionts of North American Trachymyrmex fungus-growing ants are investigated for antifungal molecules. Plate-based bioassays using ecologically-relevant fungal pathogens confirmed that these bacteria have antifungal activity. In order to purify and identify the antifungal …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …