Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry

Peripheral And Central Glucose Flux In Type I Diabetes, Jelena Anna Juras Jan 2022

Peripheral And Central Glucose Flux In Type I Diabetes, Jelena Anna Juras

Theses and Dissertations--Neuroscience

Diabetes is a complex metabolic disorder, of which high blood glucose concentration is the primary hallmark. Type I diabetes mellitus (T1DM) is characterized by the lack of insulin production, due to a poorly understood autoinflammatory cascade. In the words of historian Barnett “Diabetes may no longer be a death sentence, but for more and more people in the 21st century, it will become a life sentence”, making it the focal point of many research groups. It is estimated that around 20 million individuals worldwide live with T1DM.

Effects of long-term chronically elevated blood glucose are not only seen in micro/macro-vascular …


The Raphe-Hippocampal Tract And Its Age Differences: Diffusion Tensor Imaging And Probabilistic Tractography Study, Ashley Sekul May 2020

The Raphe-Hippocampal Tract And Its Age Differences: Diffusion Tensor Imaging And Probabilistic Tractography Study, Ashley Sekul

Honors Theses

The raphe-hippocampal tract links the raphe nuclei to the hippocampus and is responsible for the production of the neurotransmitter serotonin. The hippocampus is key in regulating emotional and stress responses. This study utilized diffusion tensor imaging which uses Functional Magnetic Resonance Imaging to provide scans of the brain for analyzing differences in the raphe-hippocampal tract as one ages. In this specific study, 491 samples were visually analyzed to gather data about the fractional anisotropy of the raphe nuclei in both male and female brains ranging from 6 to 85 years old. Through the ranking of images, some were discarded, and …


The Effects Of Insulin-Like Growth Factor-1 (Igf-1) And Insulin-Like Growth Factor Receptor (Igfr) Regulation On Cognition And Structure Of Astrocytes, Sariya Khan May 2020

The Effects Of Insulin-Like Growth Factor-1 (Igf-1) And Insulin-Like Growth Factor Receptor (Igfr) Regulation On Cognition And Structure Of Astrocytes, Sariya Khan

Honors Theses

Insulin-like growth factor-1 (IGF-1) is a neuroendocrine signaling hormone that plays an integral role in bone and tissue growth and development. Inhibition of this hormone is known to disrupt the chemistry of the brain, resulting in cognitive impairments such as those seen in many common neurodegenerative diseases. While much research has been conducted on neurons and their relation with IGF-1, the role of astrocytes still needs to be explored. Our research investigates how astrocytes are affected as a result of IGF-1 regulation. Preliminary studies in our laboratory established a connection between IGF-1 and glial fibrillary acidic protein (GFAP), and in …


Doxorubicin-Induced, Tnf-Α-Mediated Brain Oxidative Stress, Neurochemical Alterations, And Cognitive Decline: Insights Into Mechanisms Of Chemotherapy Induced Cognitive Impairment And Its Prevention, Jeriel T. Keeney Jan 2013

Doxorubicin-Induced, Tnf-Α-Mediated Brain Oxidative Stress, Neurochemical Alterations, And Cognitive Decline: Insights Into Mechanisms Of Chemotherapy Induced Cognitive Impairment And Its Prevention, Jeriel T. Keeney

Theses and Dissertations--Chemistry

The works presented in this dissertation provide insights into the mechanisms of chemotherapy-induced cognitive impairment (CICI or “ChemoBrain”) and take steps toward outlining a preventive strategy. CICI is now widely recognized as a complication of cancer chemotherapy experienced by a large percentage of cancer survivors. Approximately fifty percent of existing FDA-approved anti-cancer drugs generate reactive oxygen species (ROS). Doxorubicin (Dox), a prototypical ROS-generating chemotherapeutic agent, produces the reactive superoxide radical anion (O2-•) in vivo. Dox treatment results in oxidation of plasma proteins, including ApoA-I, leading to TNF-α-mediated oxidative stress in plasma and brain. TNF-α elevation in brain …