Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Functional And Structural Impact Of The Loss Of The Leucine-Rich Repeat Protein Lrit1 In The Mouse Retina., Catherine Ann Cobb May 2018

Functional And Structural Impact Of The Loss Of The Leucine-Rich Repeat Protein Lrit1 In The Mouse Retina., Catherine Ann Cobb

Electronic Theses and Dissertations

Mutations in genes encoding the leucine-rich repeat (LRR) proteins nyctalopin and LRIT3 lead to complete congenital stationary night blindness because they are critical to depolarizing bipolar cell function in the retina. LRIT3 has two closely related family members, LRIT1 and LRIT2. In silico analyses of publicly available RNA-Seq data showed that Lrit1 was highly expressed in the retina. Here I describe the expression pattern and impact of loss of LRIT1 on retinal function. To enable these studies, we used CRISPR/Cas9 technology to create an Lrit1-/- mouse line. Retinal morphology and morphometry analyses showed no gross changes in retinal structure …


Tau Aggregation, Conformational Selection, And Inhibition, Michael R. Holden Jan 2018

Tau Aggregation, Conformational Selection, And Inhibition, Michael R. Holden

Electronic Theses and Dissertations

Tau fibrils are a pathological hallmark of over 20 neurodegenerative disorders, including Alzheimer's disease. There currently is no cure for these diseases and treatments are limited. Once Tau fibrils form in the brain, they propagate down neuronal networks, and this spreading is linked to disease progression. Studying the behavior and structure of Tau monomer and Tau aggregates therefore may give insight into methods by which the spread of Tau fibrils can be inhibited. The structures of the Tau fibrils from different diseases are thought to vary, partially giving rise to the different disease phenotypes. Tau natively binds to microtubules by …