Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander May 2024

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander

Student Theses and Dissertations

Aerobic metabolism is known to generate damaging ROS, particularly hydrogen peroxide. Reactive oxygen species (ROS) are highly reactive molecules containing oxygen that have the potential to cause damage to cells and tissues in the body. ROS are highly reactive atoms or molecules that rapidly interact with other molecules within a cell. Intracellular accumulation can result in oxidative damage, dysfunction, and cell death. Due to the limitations of H2O2 (hydrogen peroxide) detectors, other impacts of ROS exposure may have been missed. HyPer7, a genetically encoded sensor, measures hydrogen peroxide emissions precisely and sensitively, even at sublethal levels, during …


Pipecolic Acid And Novel Insights Into Cerebral Malaria, Akua E. Mensah May 2024

Pipecolic Acid And Novel Insights Into Cerebral Malaria, Akua E. Mensah

Theses

Cerebral malaria (CM), a severe manifestation of Plasmodium infection, prompts our investigation into the nuanced role of pipecolic acid in its pathophysiology. To unravel the molecular intricacies, we conducted in vitro lysine labeling techniques of mice infected with P. berghei ANKA parasites, and human P. falciparum grown in vitro, aiming to discern the impact of Plasmodium on pipecolic acid production. Previous observations indicated an elevation in pipecolic acid levels correlating with neurological decline in children with CM. In our study, confirming elevated pipecolic acid presence in the plasma and brain tissues of CM patients and the animal model of CM, …


Characterization Of Pathological Tau Mutants, Charles J. Mcdonald Sep 2023

Characterization Of Pathological Tau Mutants, Charles J. Mcdonald

Dissertations, Theses, and Capstone Projects

Tau is a protein expressed exclusively in glia and neurons in the central nervous system and implicated in several neurogenerative diseases called “tauopathies”. Among all the tauopathies, one third is characterized by the presence of genetic mutations leading to the synthesis of tau proteins with single amino acid substitutions at specific locations and affecting protein function. While most of the initial studies have emphasize the functional role of tau as modulator of the axonal cytoskeleton, it has recently been well accepted that tau is also an intrinsically disordered protein that tends to form membraneless organelles called coacervates, due to a …


Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah Sep 2022

Role Of Nuclear Lamins In Oligodendrocyte Lineage Cells, Camila Yattah

Dissertations, Theses, and Capstone Projects

Differentiation of oligodendrocytes from progenitor cells is a highly regulated process characterized by a series of molecular changes, resulting in nuclear and morphological features unique to the mature oligodendrocyte state. Heterochromatin formation starting at the nuclear periphery, as well as increased nuclear rigidity are characteristically observed. The nuclear periphery is characterized by the presence of the nuclear lamina and it has been implicated in higher-order genome organization in cells. Lamins are the protein components of the nuclear lamina, and their expression is dependent upon the cell differentiation stage of the cells. While Lamin B1 (LMNB1) expression is high in progenitors …


Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace Sep 2022

Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is an age related neurodegenerative disease with pathology that includes amyloid plaques, neurofibrillary tangles and non-resolving neuroinflammation. Non-resolving neuroinflammation lasts the entire course of the disease and has deleterious effects and is often thought to accelerate AD pathology. Non-Steroidal Anti-inflammatory Drugs (NSAIDs) have commonly been used as therapeutics to treat pain, inflammation and vascular. NSAIDs work by altering the cyclooxygenase (COX) mediated biosynthesis of prostaglandins which are lipid mediators that have many physiological functions, for example nociception, inflammation and vasodilation. Epidemiological studies support the notion that NSAIDs could be used to treat AD. Yet, clinical trials using …


A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg Jan 2020

A Kinesin Adapter Directly Mediates Dendritic Mrna Localization During Neural Development In Mice, Hao Wu, Jing Zhou, Tianhui Zhu, Ivan Cohen, Jason Dictenberg

Publications and Research

Motor protein-based active transport is essential for mRNA localization and local translation in animal cells, yet how mRNA granules interact with motor proteins remains poorly understood. Using an unbiased yeast two–hybrid screen for interactions between murine RNA-binding proteins (RBPs) and motor proteins, here we identified protein interaction with APP tail-1 (PAT1) as a potential direct adapter between zipcode-binding protein 1 (ZBP1, a β-actin RBP) and the kinesin-I motor complex. The amino acid sequence of mouse PAT1 is similar to that of the kinesin light chain (KLC), and we found that PAT1 binds to KLC directly. Studying PAT1 in mouse …


Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval Feb 2019

Ck2 Negatively Regulates 5-Ht4 Receptor Signaling In The Prefrontal Cortex And Mediates Depression-Like Behaviors, Julia Castello Saval

Dissertations, Theses, and Capstone Projects

The serotonergic system has been the major candidate in the pathophysiology of mood related disorders such as anxiety and major depressive disorder (MDD). Unfortunately, current antidepressant drugs are ineffective in 50% of the population and require chronic administration for a period of 3-6 weeks before the onset of therapeutic response. 5-HT4 receptor (5-HT4R) agonists have emerged as potential candidates for fast antidepressant action, since an antidepressant response can be achieved after 3 days of pharmacological administration in rodents.

This dissertation aims to investigate the role of casein kinase 2 (CK2) as a regulator of 5-HT4R expression …


Pharmacological Antagonism And The Olfactory Code, Mihwa Na Sep 2017

Pharmacological Antagonism And The Olfactory Code, Mihwa Na

Dissertations, Theses, and Capstone Projects

Mammals can detect and discriminate uncountable odors through their odorant receptors. To accommodate the countless and diverse odors, exceptionally large numbers of odorant receptor (OR) genes are expressed in mammals. In addition, the mammals utilize a combinatorial code, where an odorant molecule can activate multiple ORs; an OR also responds to a set of multiple odorants. In nature, an odor is often a complex mixture of multiple odorant molecules. The combination of the ORs activated by each constituent generates the unique olfactory code for the particular odor.

Some odorants can antagonize select ORs, as discussed in Chapter 1. An antagonist …


Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis Sep 2017

Regulation Of The Amyloid Precursor Protein By Prostaglandin J2, A Mediator Of Inflammation: Relevance To Alzheimer’S Disease, Teneka L. Jean-Louis

Dissertations, Theses, and Capstone Projects

Inflammation plays a major role in Alzheimer’s disease (AD). Investigating how specific mediators of inflammation contribute to neurodegeneration in AD is crucial. Our studies focused on cyclooxygenases, which are key enzymes in inflammation and highly relevant to AD. Cyclooxygenases (COX -1, constitutive; COX-2, inducible) have emerged as important determinants of AD pathogenesis and progression. COX-2 is highly induced in AD, correlating with AD severity, and COX-1 is also involved in AD. Cyclooxygenases are the rate-limiting enzymes that convert arachidonic acid into prostaglandins (PGs), the principal mediators of CNS neuroinflammation.

The overall GOAL of these studies was to address the mechanisms …


Messenger Rna Transport And Translation Regulated By The 3' Utrs Of Dendritic Mrnas And Abnormal Alternative Splicing Of Neuroligin1 In The Fmr1 Ko Mouse Hippocampus, Tianhui Zhu Feb 2016

Messenger Rna Transport And Translation Regulated By The 3' Utrs Of Dendritic Mrnas And Abnormal Alternative Splicing Of Neuroligin1 In The Fmr1 Ko Mouse Hippocampus, Tianhui Zhu

Dissertations, Theses, and Capstone Projects

Fragile X Syndrome (FXS) is one of the most commonly inherited mental retardations. It is caused by the loss of functional fragile X mental retardation protein (FMRP). Loss of functional FMRP is the most widespread single-gene cause of autism. The most prominent phenotype of FXS patients is an IQ ranging from 20 to 70. FMRP is an RNA binding protein, widely expressed in almost all tissues and highly expressed in brain. As a RNA binding protein, 85-90 % of FMRP in the brain is associated with polyribosomes. Approximately 4 % of total mRNA is associated with FMRP, which functions in …


The Role Of The Striatal Neuropeptide Neurotensin In The Methamphetamine-Induced Neural Injury In Mice, Qingkun Liu Oct 2014

The Role Of The Striatal Neuropeptide Neurotensin In The Methamphetamine-Induced Neural Injury In Mice, Qingkun Liu

Dissertations, Theses, and Capstone Projects

Methamphetamine (METH) is a widely abused psychostimulant that induces neurotoxicity to several brain regions, including the striatum. Similar to dopamine (DA) in chemical structure, METH can be transported into DA pre-synaptic terminals, evoking the neurodegeneration in DA terminals and post-synaptic striatal neurons. Despite the critical role of DA in METH-induced neurodegeneration, no pharmaceutical therapeutics has been approved for these conditions. It is therefore essential to investigate the endogenous factors regulating the dopaminergic system. The neuropeptide neurotensin has emerged as a potential modulator of METH-induced striatal neurodegeneration mainly due to its intimate interactions with dopamine in the striatum.

In this study, …