Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry

Characterization Of The Tsc/Dyrk1a Interaction, Supriya Joshi Jan 2020

Characterization Of The Tsc/Dyrk1a Interaction, Supriya Joshi

Theses and Dissertations

The Tuberous sclerosis complex (TSC) includes TSC1, TSC2 and the TBC1D7 subunits that together function as a principal inhibitor of the mTOR protein kinase complex 1 (mTORC1). mTORC1 is a master regulator of cell growth and proliferation that responds to signaling cues such as growth factors and nutrient availability. Proteomic studies in our lab revealed an interaction between the TSC subunits and DYRK1A, a ubiquitous protein kinase encoded by a gene located in the Down syndrome (DS) region on human chr21. In this study, we sought to validate the interaction of the TSC components with DYRK1A and to determine the …


Characterization Of The Dyrk1a Protein-Protein Interaction Network, Varsha Ananthapadmanabhan Jan 2020

Characterization Of The Dyrk1a Protein-Protein Interaction Network, Varsha Ananthapadmanabhan

Theses and Dissertations

Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is a protein kinase encoded by a dosage-dependent gene. An extra copy of DYRK1A contributes to Down syndrome (DS) pathogenesis while loss of one allele causes severe mental retardation and autism. DYRK1A is involved in phosphorylation of several proteins that regulate cell cycle control and tumor suppression. However, the function and regulation of this kinase is not well understood and current knowledge does not fully explain dosage-dependent function of this important kinase. Our previous proteomic studies identified several novel DYRK1A interacting proteins including RNF169, FAM117B, TROAP, LZTS1, LZTS2 and DCAF7. In this …


Processing Of 3′-Blocked Dna Double-Strand Breaks By Tyrosyl-Dna Phosphodiesterase 1, Artemis And Polynucleotide Kinase/ Phosphatase, Ajinkya S. Kawale Jan 2018

Processing Of 3′-Blocked Dna Double-Strand Breaks By Tyrosyl-Dna Phosphodiesterase 1, Artemis And Polynucleotide Kinase/ Phosphatase, Ajinkya S. Kawale

Theses and Dissertations

DNA double-strand breaks (DSBs) containing unligatable termini are potent cytotoxic lesions leading to growth arrest or cell death. The Artemis nuclease and tyrosyl-DNA phosphodiesterase (TDP1) are each capable of resolving protruding 3′-phosphoglycolate (PG) termini of DNA double-strand breaks (DSBs). Consequently, a knockout of Artemis and a knockout/knockdown of TDP1 rendered cells sensitive to the radiomimetic agent neocarzinostatin (NCS), which induces 3′-PG-terminated DSBs. Unexpectedly, however, a knockdown or knockout of TDP1 in Artemis-null cells did not confer any greater sensitivity than either deficiency alone, indicating a strict epistasis between TDP1 and Artemis. Moreover, a deficiency in Artemis, but not TDP1, resulted …


Separation Of Blood Mixtures Using Fluorescently Labeled Antibodies, Christopher Ehrhardt, Dani Jabado, Emily Brocato Jan 2017

Separation Of Blood Mixtures Using Fluorescently Labeled Antibodies, Christopher Ehrhardt, Dani Jabado, Emily Brocato

Undergraduate Research Posters

Identifying and analyzing biological mixture samples at a crime scene are of paramount concern for forensic scientists, especially if that type of evidence contains only one cell type. The presence of multiple contributors in a biological evidence sample reduces the probative value of DNA evidence and can sometimes lead to its eventual loss of value. As such, this study was performed in an attempt to examine and evaluate flow cytometry analysis as a means to separate blood mixture samples labeled with fluorescent antibodies. Fluorescein Isothiocyanate (FITC) antibodies were specifically targeted and bound to HLA (Human Leukocyte Antigens) markers present on …