Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Theses/Dissertations

2022

Institution
Keyword
Publication

Articles 1 - 30 of 68

Full-Text Articles in Biochemistry

Metoprolol Disrupts Sterol Biosynthesis Through Inhibition Of 7-Dehydrocholesterol Reductase (Dhcr7), Luke B. Allen Dec 2022

Metoprolol Disrupts Sterol Biosynthesis Through Inhibition Of 7-Dehydrocholesterol Reductase (Dhcr7), Luke B. Allen

Theses & Dissertations

Cholesterol is essential for life. It is particularly important in the brain as it relies on de novo synthesis of cholesterol following the formation of the blood brain barrier (BBB). As such, disrupting sterol biosynthesis during neurodevelopment can have devastating outcomes. The most common post-lanosterol sterol biosynthesis disorder, Smith-Lemli-Opitz Syndrome, arises from a faulty DHCR7 enzyme. DHCR7 has also been shown to be inhibited by several psychotropic medications. Here we assess six beta-blockers and their effects on sterol biosynthesis in vitro. Two beta-blockers, metoprolol and nebivolol strongly inhibit DHCR7 in four separate in vitro models of both mouse and …


Molecular Basis Of Viroid Rna-Templated Transcription, Shachinthaka D. Dissanayaka Mudiyanselage Dec 2022

Molecular Basis Of Viroid Rna-Templated Transcription, Shachinthaka D. Dissanayaka Mudiyanselage

Theses and Dissertations

Transcription is a fundamental process catalyzed by DNA-dependent RNA polymerases (DdRPs). Interestingly, some DdRPs can use both DNA and RNA as templates for transcription. This RNA-dependent RNA polymerase (RdRP) activity of DdRPs is used by RNA-based pathogens such as viroids and hepatitis delta virus for replication. In addition, RdRP activity of DdRPs widely occurs in various organisms to regulate gene transcription. Despite the importance of this intrinsic RdRP activity of DdRPs, associated factors and mechanisms are in their infancy stage. We employed potato spindle tuber viroid (PSTVd) as a model to study RNA-templated transcription. Here, we present evidence showing that …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban Dec 2022

Molecular Characterization Of Nitrogenase Regulation In Methanosarcina Acetivorans, Melissa Chanderban

Graduate Theses and Dissertations

Nitrogenase is the metalloenzyme only found in bacteria and archaea that is essential for biological nitrogen fixation (diazotrophy), but it can also serve as a catalyst in biofuel production. All diazotrophs contain a molybdenum (Mo) nitrogenase, while some species contain additional alternative nitrogenases where either vanadium (V) or iron (Fe) replace Mo in the active site cofactor. Nitrogen fixation by bacteria has been extensively studied. The limited investigation of nitrogen fixation in methanogenic archaea (methanogens) indicates production of nitrogenase is simpler than in bacteria and methanogen nitrogenase has different biochemical properties. Thus, methanogen nitrogenases provide a promising alternative for genetic …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Distribution Of Erm Proteins In The Stomach Mucosa Of Normal And Diabetic Rats, Asmaa Salem Al Sereidi Nov 2022

Distribution Of Erm Proteins In The Stomach Mucosa Of Normal And Diabetic Rats, Asmaa Salem Al Sereidi

Theses

Diabetes mellitus (DM), or simply diabetes, refers to a group of metabolic disorders that include a variety of diseases that disrupt our body's metabolism. The long-term uncontrolled disease can lead to stomach complications such as gastroparesis, as well as disruption in several proteins, such as ERM (Ezrin, radixin, moesin) proteins. ERM proteins are three proteins that are structurally and functionally related. ERM proteins have molecular masses of 82, 80, and 75 kDa, respectively. Ezrin is highly expressed in the stomach, especially in parietal cells that secrete gastric acid. ERM proteins function as scaffolding proteins in lipid rafts and granule trafficking …


The Effect Of Licogliflozin (Sglt1/2 Inhibitor) On Diabetes And Cardiac Complications, Alanoud Gharib Alblooshi Nov 2022

The Effect Of Licogliflozin (Sglt1/2 Inhibitor) On Diabetes And Cardiac Complications, Alanoud Gharib Alblooshi

Theses

Diabetes mellitus (DM) is a chronic endocrine disease affecting millions of people worldwide. In spite of the advances made in the management of DM, poor glycemic control and diabetes complications are still very common. There is a continuous search for new and more effective drugs to treat DM. One of the drugs currently in clinical trials for the treatment of DM is licogliflozin (LIK066), a dual SGLT1/2 inhibitor, which can be used to treat obesity and diabetes. LIK066 inhibits glucose reabsorption in the kidney and small intestine, thereby reducing hyperglycemia. This study aims to investigate the efficacy of licogliflozin on …


Characterization Of The Poly (Adp-Ribose) Polymerase Family In The Fusarium Oxysporum Species Complex, Daniel Norment Oct 2022

Characterization Of The Poly (Adp-Ribose) Polymerase Family In The Fusarium Oxysporum Species Complex, Daniel Norment

Masters Theses

Fusarium oxysporum is a filamentous fungus that is known to invade over a hundred different hosts and poses a major threat to the economy and food supply world-wide. Poly (Adenosine diphosphate-Ribose) Polymerase (PARP) is a family of regulatory proteins that affect change in the cell through transfer of ADP-Ribose moieties onto target molecules. The most well-studied PARP protein is the human PARP1, a PARylating nuclear protein that serves as our model PARP protein. F. oxysporum was found to contain a large expansion of PARP catalytic-domain-containing proteins compared to other filamentous fungi. We utilized in silico multiple sequence alignments and domain …


Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias Sep 2022

Examination Of The Time Delayed Induction Between Prior Encapsulation Of Catalytic Enzymes In P22 Virus-Like Particles, Andrea Hernandez Irias

Chemistry Theses

Protein cages found in nature have the ability to protect and develop new nanomaterials in order to enhance catalytic reactions. This is due to the ability of these organelle structures to mimic protein-based organelles such as Virus-Like Particles (VLPs). VLPs have the ability to not only resemble virus protein structures but to encapsulate enzymes while retaining their activity. This research examines the in vitro encapsulation withing the bacteriophage P22 derived VLP, and show that some enzymes may require a delay in encapsulation to allowed proper folding

and maturation before they can be encapsulated inside P22 as fully active enzymes. Exploring …


Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Perseverance Of Protein Homeostasis Despite Mistranslation, Farah Hasan Aug 2022

Perseverance Of Protein Homeostasis Despite Mistranslation, Farah Hasan

Electronic Thesis and Dissertation Repository

Transfer RNAs (tRNAs) are essential for protein synthesis and translation fidelity. Some human tRNA variants may cause amino acid misincorporation: tRNAGly variants (tRNAGlyCCC, tRNAGlyGCC) have mutations that generate an alanine tRNA identity element (G3:U70), likely causing mis-aminoacylation of glycine tRNAs with alanine, while the tRNAAlaAGC G35C (tRNAAlaACC) variant may function similarly to mis-incorporate Ala at Gly codons by generating a Gly anticodon. I propose that these mistranslating tRNAs will disrupt protein homeostasis in mammalian cells. Although the tRNAGly and tRNAAla variants did not affect protein synthesis …


Dysregulation Of Mir-10a Promotes Cancer Features In Cholangiocarcinoma, Matthieu Spriet Aug 2022

Dysregulation Of Mir-10a Promotes Cancer Features In Cholangiocarcinoma, Matthieu Spriet

Theses & Dissertations

Cholangiocarcinoma is a primary liver cancer of the bile duct epithelium that exhibits microRNA-mediated control of tumor cell signaling. Strides toward new treatment rest on a better defining of cholangiocarcinoma tumor biology including the RNA-based layer of regulation. Additionally, there is a gap in knowledge on microRNA expression in human tissue. While there is RNA-seq data of microRNA expression in tissue, it does not differentiate between cell types, thus leaving unanswered questions about cell specific microRNA biology and expression.

Here, we identify miR-10a as an oncogenic microRNA acting through MAPK signaling. Using cholangiocarcinoma cell lines, we determined miR-10a is an …


Improving The Ribozyme Toolbox: From Structure-Function Insights To Synthetic Biology Applications, Jessica Michelle Roberts Aug 2022

Improving The Ribozyme Toolbox: From Structure-Function Insights To Synthetic Biology Applications, Jessica Michelle Roberts

Boise State University Theses and Dissertations

Self-cleaving ribozymes are a naturally occurring class of catalytically active RNA molecules which cleave their own phosphate backbone. In nature, self-cleaving ribozymes are best known for their role in processing concatamers of viral genomes into monomers during viral replication in some RNA viruses, but to a lesser degree have also been implicated in mRNA regulation and processing in bacteria and eukaryotes. In addition to their biological relevance, these RNA enzymes have been harnessed as important biomolecular tools with a variety of applications in fields such as bioengineering. Self-cleaving ribozymes are relatively small and easy to generate in the lab using …


Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer Aug 2022

Investigating The Biochemical Properties Of A Novel Mutation, A194v, In Human Rad51, Briana Vollbeer

All Theses

DNA double-strand breaks (DSB) are one of the most serious DNA lesions because improper repair of a DSB can lead to loss of heterozygosity, aneuploidy, and cancer. One of the primary pathways to repair DSBs is homologous recombination (HR). HR resects the DNA around the DSB and then uses homologous DNA as a template to restore the broken sequence. RAD51 has a vital function in this pathway by forming a nucleoprotein filament on a resected end of the DSB. The nucleoprotein filament searches for homology within the homologous DNA. Once homology is located, strand invasion followed by strand exchange occurs. …


Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez Aug 2022

Identifying A Glucocorticoid-Activated Gpcr That Rapidly And Non-Genomically Increases Camp Levels In Mammalian Cells, Francisco Nunez

Pharmaceutical Sciences (PhD) Dissertations

Glucocorticoids (GCs) are steroid hormones that regulate diverse physiological processes. Synthetic versions of GCs are commonly used to treat inflammatory diseases such as asthma by modulating gene expression to suppressing several inflammatory activities. However, it is estimated that 5-10% of asthmatics are unresponsive to GCs, which may be explained by receptor desensitization and/or the presence of a neutrophilic endotype. One understudied phenomenon of GCs is their ability to induce rapid, non-genomic actions. For example, GCs can acutely modulate calcium concentrations levels, induce smooth muscle relaxation and modulate nitric oxide synthase activity, within minutes and sometimes seconds, which is too rapid …


Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson Aug 2022

Determining The Full-Length Structure Of Collagenase H Using Small-Angle X-Ray Scattering, Josie Carson

Chemistry & Biochemistry Undergraduate Honors Theses

Known to cause gas gangrene, Hathewaya histolytica secretes two sister collagenases, collagenase G (Col G) and collagenase H (Col H), to degrade the triple helical structure of collagen to further infection in a host. Individual domains of Col H have been crystalized in previous studies, but methods in x-ray crystallization of full-length Col H have been unsuccessful. Using Small Angle X-Ray Scattering (SAXS) data, atomistic modeling was used to generate multiple conformations of Col H while accounting for flexibility between domains. Full-length Col H was found to adopt a two-state conformational model exhibiting a majority compact and a minority elongated …


Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes Aug 2022

Characterization Of The Wee1 Homologues And The Investigation Of Factors Promoting Cellular Enlargement In Cryptococcus Neoformans, Rodney J. Colón Reyes

All Dissertations

Cryptococcus neoformans is an opportunistic fungal pathogen, infecting mainly immunocompromised individuals. As the main cause of cryptococcosis, it is responsible for over 180,000 deaths every year. As an environmental yeast, it has unique adaptations that allow it to proliferate in the human host. Among these adaptations its capacity to transition to an extreme phenotype known as Titan cells is of special interest to researchers. With sizes above 10 um and able to reach 70 um or more in cell size. This size is accompanied with a large vacuole, larger polysaccharide capsule, and an increased resistance to fluconazole (FLC). FLC is …


Investigating The Biorisk Of Genetically Engineered Thermosynechococcus Elongatus Bp1, Cherrelle Leah Barnes Aug 2022

Investigating The Biorisk Of Genetically Engineered Thermosynechococcus Elongatus Bp1, Cherrelle Leah Barnes

Chemistry & Biochemistry Theses & Dissertations

Cyanobacteria, also known as blue-green algae, are an ancient group of microorganisms that use simple materials, such as sunlight, carbon dioxide and water, to produce energy while providing oxygen to the atmosphere by performing photosynthesis. Synthetic biology approaches have been employed with cyanobacteria as a platform to produce a range of products, such as biofuels, by inserting a series of genes into the cyanobacterial genome that will allow the conversion of metabolic intermediates to such desired products. Although these methods are promising, it is important to understand any potential bio-risk they pose. This research evaluates the potential bio-risk of genetically …


Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna Aug 2022

Applications Of Nuclear Magnetic Resonance Spectroscopy: From Drug Discovery To Protein Structure And Dynamics., Mark Vincent C. Dela Cerna

Electronic Theses and Dissertations

The versatility of nuclear magnetic resonance (NMR) spectroscopy is apparent when presented with diverse applications to which it can contribute. Here, NMR is used i) as a screening/ validation tool for a drug discovery program targeting the Phosphatase of Regenerating Liver 3 (PRL3), ii) to characterize the conformational heterogeneity of p53 regulator, Murine Double Minute X (MDMX), and iii) to characterize the solution dynamics of guanosine monophosphate kinase (GMPK). Mounting evidence suggesting roles for PRL3 in oncogenesis and metastasis has catapulted it into prominence as a cancer drug target. Yet, despite significant efforts, there are no PRL3 small molecule inhibitors …


The Importance Of Co2 Recapture In The Co2 Concentrating Mechanism Of Chlamydomonas Reinhardtii, Ashwani Rai Jul 2022

The Importance Of Co2 Recapture In The Co2 Concentrating Mechanism Of Chlamydomonas Reinhardtii, Ashwani Rai

LSU Doctoral Dissertations

The aim of this thesis is to investigate the CO2 concentrating mechanism (CCM) of Chlamydomonas reinhardtii and to develop a quick method for estimating the activity of carbonic anhydrases (CAs). The first project demonstrates that there are two almost identical mitochondrial CAs in C. reinhardtii, CAH4 and CAH5, that help to maintain photosynthesis and minimize the leak of CO2 generated by respiration and photorespiration. We used an RNAi approach to reduce the expression of CAH4 and CAH5 so that their physiological functions could be studied. RNAi mutants with low expression of CAH4 and CAH5 have impaired rates …


Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni Jun 2022

Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni

Doctoral Dissertations

Caspases are cysteine aspartate proteases involved in various cellular pathways including apoptosis, inflammation, and neurodegeneration. Caspase-9 is classified as an initiator apoptotic caspase that is activated upon intrinsic stress. Caspase-9 is composed of two domains: an N- terminal CARD domain and a catalytic core domain. We have employed hydrogen deuterium exchange mass spectrometry (H/DX-MS) to determine the 1) dynamics of the full-length caspase- 9, 2) dynamic impacts on caspase-9 upon substrate-induced dimerization, and 3) regions involved in the CARD: catalytic core domains interactions. Upon intrinsic stress, caspase-9 activates executioners, procaspase-3 and -7 but not procaspase-6. We have employed site-directed mutagenesis …


Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn Jun 2022

Investigating The Role Of The Cholesterol Recognition/Interaction Amino-Acid Consensus Sequence In Follicle Stimulating Hormone Receptor Function And Structure, Tatyana Lynn

Honors Theses

Human infertility is a complex disorder that can often be attributed to a dysfunction of the endocrine system. Follicle-stimulating hormone (FSH) is one of many hormones that participate in a complex process in both women and men to regulate normal reproduction. The dysfunction of this hormone and its receptor are some of the many causes of infertility. FSH is secreted by the anterior pituitary and, in women, initiates a cascade of biological events that enable ovulation. FSH carries out its function by binding and activating specific receptors. The FSH receptor (FSHR) is a G protein-coupled receptor (GPCR) that is located …


Mutations In Caveolin Binding Motif Alter Human Follicle Stimulating Hormone Receptor Signaling, Katarina Zahedi Jun 2022

Mutations In Caveolin Binding Motif Alter Human Follicle Stimulating Hormone Receptor Signaling, Katarina Zahedi

Honors Theses

Globally, there are about 48 million couples and 186 million individuals of reproductive age that are affected by infertility. Some cases of infertility in both men and women have been attributed to impaired follicle stimulating hormone (FSH) signaling. The lack of proper function of the cognate receptor for FSH (FSHR) could contribute to infertility since the biochemical signal generated by FSH binding to FSHR stimulates the production of a sperm-stabilizing protein in males and follicle maturation in females. It has been demonstrated that human FSHR (hFSHR) localizes to lipid rafts, which are rigid and detergent-resistant microdomains in the cell membrane. …


Molecular Characterization Of Integrase-Rna Interactions And Their Role In The Replication Of Hiv-1 And Other Retroviruses, Christian Shema Mugisha May 2022

Molecular Characterization Of Integrase-Rna Interactions And Their Role In The Replication Of Hiv-1 And Other Retroviruses, Christian Shema Mugisha

Arts & Sciences Electronic Theses and Dissertations

HIV-1 integrase (IN) enzyme has an emerging non-catalytic role in particle maturation, whichinvolves its binding to the viral genome in virions. Allosteric integrase inhibitors (ALLINIs) and class II integrase substitutions inhibit the binding of IN to the viral genome and cause formation of eccentric non-infectious HIV-1 particles. These viruses are characterized by the mislocalization of the viral ribonucleoprotein complexes between the translucent conical CA lattice and the viral lipid envelope. We have previously demonstrated that IN binding to the viral genome is mediated by basic residues within the C-terminal domain of IN. In the first chapter, we show how basic …


Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi May 2022

Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi

Biological Sciences Theses and Dissertations

Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, …


Studies On The Impact Of An Insect Growth Regulator And Host Plant On Reproductive Physiology Of Lygus Lineolaris, James Houston Chance Anderson May 2022

Studies On The Impact Of An Insect Growth Regulator And Host Plant On Reproductive Physiology Of Lygus Lineolaris, James Houston Chance Anderson

Theses and Dissertations

The tarnished plant bug, Lygus lineolaris, is an economically important polyphagous pest with a broad host range. With occurrence of insecticide resistance, strategies to limit its ability to reproduce, which would curb population growth, are becoming increasingly more valuable. Strategies toward this goal include the application of insect growth regulators (IGRs) and utilization of resistant cotton lines. This thesis summarizes experiments that elucidate the physiological underpinnings of the mode of action of novaluron, an IGR, and a cotton chromosome substitution (CS) line on the reproductive physiology of L. lineolaris. Investigations reported herein indicate that novaluron inhibits oviposition by …


Retro-Structural Analysis Of The Four Helix Bundle Motif In Binuclear Proteins, Walker Pedigo, Maggie Smith May 2022

Retro-Structural Analysis Of The Four Helix Bundle Motif In Binuclear Proteins, Walker Pedigo, Maggie Smith

Honors Theses

Protein structure is directly related to protein function. There are four levels of protein structure: primary, secondary, tertiary, and quaternary. The interactions amongst the structural components of a protein give rise to its unique characteristics. The four helix bundle motif is a common structural trait in a variety of binuclear proteins. In this study, PyMOL, a molecular visualization system, was used to analyze binuclear proteins that possess a four helix bundle. Images of proteins containing dicopper, diiron, and dimanganese sites were captured. The images were compiled into figures for each individual protein. After creating the figures, each protein was further …


Mechanisms Of Sorting And Fission At The Endosomes, Kanika Dhawan May 2022

Mechanisms Of Sorting And Fission At The Endosomes, Kanika Dhawan

Theses & Dissertations

Endocytic trafficking is a fundamental cellular process that regulates the transport of lipids and proteins. Our lab focuses on the intracellular trafficking of receptors involved in cellular processes such as cell division, migration, and proliferation. Accordingly, the regulation of these trafficking pathways is tightly controlled, involving a complex series of events, of which a key step is the endosomal fission. Perturbations in the endosomal network can eventually lead to impaired receptor recycling to the plasma membrane (PM) and, therefore, have pathological consequences like Alzheimer’s disease and multiple cancers. Upon internalization, cargo-laden vesicles released from the PM fuse with the sorting …