Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Theses/Dissertations

2021

Institution
Keyword
Publication

Articles 1 - 30 of 35

Full-Text Articles in Biochemistry

A Review Of Calcineurin Biophysics With Implications For Cardiac Physiology, Ryan B. Williams Dec 2021

A Review Of Calcineurin Biophysics With Implications For Cardiac Physiology, Ryan B. Williams

Theses and Dissertations

Calmodulin is a prevalent calcium sensing protein found in all cells. Three genes exist for calmodulin and all three of these genes encode for the exact same protein sequence. Recently mutations in the amino acid sequence of calmodulin have been identified in living human patients. Thus far, patients harboring these mutations in the calmodulin sequence have only displayed an altered cardiac related phenotype. Calcineurin is involved in many key physiological processes and its activity is regulated by calcium and calmodulin. In order to assess whether or not calcineurin contributes to calmodulinopathy (a pathological state arising from dysfunctional calmodulin), a comprehensive …


Development And Validation Of A Method For The Determination Of Designer Benzodiazepines In Hair By Liquid Chromatography Tandem Mass Spectrometry (Lc-Ms/Ms), Laura C. Defreitas Dec 2021

Development And Validation Of A Method For The Determination Of Designer Benzodiazepines In Hair By Liquid Chromatography Tandem Mass Spectrometry (Lc-Ms/Ms), Laura C. Defreitas

Student Theses

In recent years, new designer benzodiazepines have become a challenge in forensic toxicology. These substances are analogues of the classic benzodiazepines, but their pharmacology is not well known, and many of them have been associated with overdoses and deaths. As a result, there has been a surge in efforts to develop ways to accurately test for these compounds in different biological matrices. This study focused to develop and validate a method for determining 17 new designer benzodiazepines in hair by liquid chromatography tandem mass spectrometry (LC-MS/MS). Hair samples were decontaminated, pulverized, and 20 mg of the sample was incubated in …


Agonist-Induced Conformational Changes In The Nmda Receptor, Ryan Durham, Ryan Durham Dec 2021

Agonist-Induced Conformational Changes In The Nmda Receptor, Ryan Durham, Ryan Durham

Dissertations & Theses (Open Access)

NMDA receptors are ligand-gated ion channels that mediate a number of physiological and pathological phenomena within the mammalian central nervous system. Under the typical course of activation, these receptors bind to glycine and glutamate molecules and undergo a series of conformational changes that results in the opening of a cation-permeable pore in the neuronal plasma membrane. Various aspects of NMDA receptor function are not fully understood, including the phenomenon of negative cooperativity between the glycine- and glutamate-binding sites of the receptor and the mechanism controlling partial agonism. Past studies utilizing static structural snapshots of the receptor or isolated domains of …


Effects Of Localized Oxygen Production By Electrolysis On The First-Generation Glucose Sensor Response, Nandita Halder Dec 2021

Effects Of Localized Oxygen Production By Electrolysis On The First-Generation Glucose Sensor Response, Nandita Halder

Graduate Theses and Dissertations

Glucose sensors are very important for detecting blood glucose both in vitro and in vivo. First-generation glucose biosensors were based on the glucose oxidase (GOx) enzyme using molecular oxygen as the electron acceptor and therefore oxygen dependent. Unfortunately for in-vivo work, oxygen in the body is variable and limited. Alternative approaches to overcome the oxygen dependency came with their own limitations. The widely used and commercially available ex-vivo glucose test strip uses a mediator in place of oxygen to free it from oxygen dependency. The mediator-based technology, in most cases cannot be transferred to in vivo applications due to the …


Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu Dec 2021

Deciphering The Role Of Hsp110 Chaperones In Diseases Of Protein Misfolding, Unekwu M. Yakubu

Dissertations & Theses (Open Access)

Molecular chaperones maintain protein homeostasis (proteostasis) by ensuring the proper folding of polypeptides. Loss of proteostasis has been linked to the onset of numerous neurodegenerative disorders including Alzheimer’s, Parkinson’s, and Huntington’s disease. Hsp110 is a member of the Hsp70 class of molecular chaperones and acts as a nucleotide exchange factor (NEF) for Hsp70, the preeminent Hsp70-family protein folding chaperone. Hsp110 promotes rapid cycling of ADP for ATP, allowing Hsp70 to properly fold nascent or unfolded polypeptides in iterative cycles. In addition to its NEF activity, Hsp110 possesses an Hsp70-like substrate binding domain (SBD) whose biological roles are undefined. Previous work …


Impact Of Pank1 Deletion On Mitochondrial Acetylation And Cardiac Function During Pressure Overload., Timothy N. Audam Dec 2021

Impact Of Pank1 Deletion On Mitochondrial Acetylation And Cardiac Function During Pressure Overload., Timothy N. Audam

Electronic Theses and Dissertations

Recent studies have associated elevated protein acetylation levels with heart failure in humans. Although mechanisms promoting elevated acetylation levels are not fully known, excess acetyl-CoA may drive enzyme-independent acetylation of cardiac proteins. Accumulation of acetyl-CoA depends on the availability of sufficient CoA, whose production is regulated by pantothenate kinases in the CoA biosynthetic pathway. We show that cardiac proteins are hyperacetylated during heart failure in humans and tested in mice whether limiting CoA abundance would improve ventricular remodeling during pressure overload-induced hypertrophy. We limited cardiac CoA levels by deleting the rate-limiting enzyme in CoA biosynthesis, Pank1 (one of three PANK-encoding …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo Aug 2021

The Regulation Of Pannexin1 And Pannexin2 In The Skin In Health And Disease, Rafael E. Sanchez Pupo

Electronic Thesis and Dissertation Repository

Pannexins (PANX1, 2, 3) are a family of channel-forming glycoproteins that mediate intracellular and paracrine signaling. In contrast to PANX2, PANX1 has been extensively investigated in the skin, modulating cell differentiation, wound healing, and melanoma development. PANX1 and PANX2 can co-exist in the same cell and form mixed channels where their glycosylation seems to regulate their intermixing. N-glycosylation and caspase cleavage have been proposed as modulators of the function of PANX1, but their effects on PANX2 are unknown. We explored the PANX2 expression in mouse skin and showed that a Panx2 splice variant (PANX2-202) is continuously expressed throughout aging skin. …


Modulation Of Glucose Homeostasis By Nucleotide P2y2 Receptor And Biological Sex, Hailee Anne Marino Aug 2021

Modulation Of Glucose Homeostasis By Nucleotide P2y2 Receptor And Biological Sex, Hailee Anne Marino

MSU Graduate Theses

Recent insights into the pathological role of Nucleotide P2Y2 receptor suggest P2Y2R involvement in high fat diet-induced obesity and potentiates insulin resistance. However, these recent insights do not demonstrate how P2Y2R modulates glucose homeostasis under physiological conditions. Further, it remains unknown how sex biological factors influence P2Y2R receptor signaling in the regulation of glucose homeostasis. The research objective for the present study is to elucidate the novel roles of P2Y2 in fasting blood glucose and glucose tolerance (basal insulin sensitivity) under resting conditions in males and females. We expected that under physiological …


Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal Jul 2021

Complexation Of Glycoalkaloid Α- Tomatine With Sterols And Its Potential Application As An Anti-Cancer Drug, Bishal Nepal

Dissertations

Glycoalkaloids (GAs) are secondary metabolites found mostly in higher plant species and some marine invertebrates. They are known to form complexes with 3β-hydroxy sterols such as cholesterol causing membrane disruption. So far the visual evidence showcasing the complexes formed between glycoalkaloids and sterols has been mainly restricted to some earlier studies using Brewster angle microscopy. This study aimed to develop a method for topographic and morphological analysis of sterol-glycoalkaloid complexes. Langmuir-Blodgett (LB) transfer of monolayers comprising of glycoalkaloid tomatine, sterols, and lipids in varying molar ratios onto mica followed by AFM examination was performed. The AFM method used required minimal …


Analysis Of Botulinum Toxin A And Interacting Proteins In Skeletal Muscle Cells: An Investigation Into The Mechanisms Of Botulinum Toxin A As A Treatment For Chronic Exertional Compartment Syndrome, Lauren Kee Jul 2021

Analysis Of Botulinum Toxin A And Interacting Proteins In Skeletal Muscle Cells: An Investigation Into The Mechanisms Of Botulinum Toxin A As A Treatment For Chronic Exertional Compartment Syndrome, Lauren Kee

Pence-Boyce STEM Student Scholarship

Background: Chronic exertional compartment syndrome (CECS) is a condition in which muscle tissue expands against the surrounding fascia during activity and is compressed along with the nerves and blood vessels within the muscle compartment, leading to abnormally high intracompartmental pressure (ICP) and debilitating pain. Treatment typically includes fasciotomy, which results in significant levels of CECS recurrence; however, botulinum toxin A (BoNT-A) injection has recently been seen to decrease both ICP and pain through an unknown mechanism with little to no recurrence.

Methods: In this study, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), prostaglandin E2 receptor 4 (EP4), endothelial nitric oxide synthase (eNOS), …


Synthesis And Evaluation Of C-10 Nitrogenated Aporphine Alkaloids At Serotonin And Dopamine Receptors, Anupam Karki Jun 2021

Synthesis And Evaluation Of C-10 Nitrogenated Aporphine Alkaloids At Serotonin And Dopamine Receptors, Anupam Karki

Dissertations, Theses, and Capstone Projects

Aporphine alkaloids, belonging to the isoquinoline class of compounds, have been investigated as a potential source of ligands for Central Nervous System (CNS) receptors. Previous research indicates that the aporphine scaffold may be manipulated to synthesize selective ligands for serotonin and dopamine receptors. Novel aporphine alkaloids containing C10 nitrogen substitutions were synthesized, and their affinities were evaluated at serotonin (5-HT1A, 5-HT1B, 5-HT2A, 5-HT7A) receptors and dopamine (D1, D2, D3, D4, and D5) receptors. Two series of racemic aporphine compounds with C10 nitrogenous functionalities were synthesized and analyzed at the aforementioned receptors. The first series of aporphine alkaloids contain C10 nitro, …


Design, Synthesis And Evaluation Of Molecules With Selective And Poly-Pharmacological Actions At D1r, D3r And Sigma Receptors, Pierpaolo Cordone Jun 2021

Design, Synthesis And Evaluation Of Molecules With Selective And Poly-Pharmacological Actions At D1r, D3r And Sigma Receptors, Pierpaolo Cordone

Dissertations, Theses, and Capstone Projects

The dopamine D3 receptor (D3R) is one of the most studied receptors involved in drug addiction. One of the most common strategies to treat substance use disorders is via D3R antagonism. The majority of the D3R antagonists synthesized so far have poor pharmacokinetic properties and/or lack selectivity toward D3R. In this thesis, the design, synthesis and biological evaluation of novel molecules that target the dopamine D1 receptor (D1R), D3R and the serendipitous discovery of molecules that target s receptors will be described.

Chapter 1 presents a survey of the fundamental pharmacology of D1R, D3R and s receptors and the therapeutic …


The Role Of Nutrient Sensitive Protein O-Glcnacylation In Developmental Cortical Neurogenesis, Shama Parween Jun 2021

The Role Of Nutrient Sensitive Protein O-Glcnacylation In Developmental Cortical Neurogenesis, Shama Parween

Dissertations

The nutrient responsive O-GlcNAcylation is a dynamic, posttranslational protein modification present on many nucleocytoplasmic and mitochondrial proteins. Previous research has indicated that hyperglycaemia increases the levels of total O-GlcNAcylation within cells. Transcription factors and histones are among hundreds of proteins that have been reported to be O-GlcNAcylated and have importance in cell fate determination during cell growth, proliferation, and differentiation. However, the role of protein O-GlcNAcylation in epigenome control in response to nutritional perturbations is poorly understood. Hyperglycaemia induced protein O-GlcNAcylation have been linked to several pathologies, including obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. …


Lipocalin-2 Ameliorates The Signs And Outcomes Of Diabetes Mellitus In An Animal Model, Saeeda Mohammed Al Jaberi Jun 2021

Lipocalin-2 Ameliorates The Signs And Outcomes Of Diabetes Mellitus In An Animal Model, Saeeda Mohammed Al Jaberi

Theses

Lipocalin-2 (LCN2) is a new adipocytokine consisting of 198 amino acids. It is also referred to as neutrophil gelatinase-associated lipocalin, siderocalin, uterocalin, α1-microglobulin related protein, or 24p3. LCN2 belongs to a large group of transport proteins that are capable of carrying small and lipid-soluble molecules in blood circulation. It has two membrane receptors, megalin/glycoprotein GP330, which binds human LCN2 and SLC22A17 or 24p3R, which forms complexes with mouse Lcn2 protein. LCN2 is encoded by a gene located at chromosome locus 9q34.11. LCN2 was initially isolated from neutrophil granules released at the site of infection and inflammation in humans and from …


Determining The Role Of Methylglyoxal (Mgo) And The Trpa1 Channel In Inducing Astrocyte Senescence And Neurodegeneration, Natalie Hill May 2021

Determining The Role Of Methylglyoxal (Mgo) And The Trpa1 Channel In Inducing Astrocyte Senescence And Neurodegeneration, Natalie Hill

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Aging is the largest risk factor for the development of Alzheimer’s disease (AD) and related dementias. A recently proposed driver of age-related pathologies is cellular senescence, a phenotype that consists of cell-cycle arrest and an inflammatory response known as the senescence-associated secretory phenotype (SASP). Although there is a link between the accumulation of senescent cells and neurodegeneration, much remains unknown about how senescent cells arise in the brain. Astrocytes are the most abundant cell type in the brain that serve important roles like supporting neurons and proliferating in response to stress. Methylglyoxal (MGO) is a glycolytic byproduct that can react …


Potentiation Of Tmem16a Currents By Clca1 In Cystic Fibrosis Airway, Kayla Berry May 2021

Potentiation Of Tmem16a Currents By Clca1 In Cystic Fibrosis Airway, Kayla Berry

Arts & Sciences Electronic Theses and Dissertations

In the airway, proper activity of the anion channel cystic fibrosis transmembrane conductance regulator (CFTR) contributes to innate immune defense by maintaining a hydratedand alkaline mucus layer through the conductance of chloride and bicarbonate ions. This allows potentially pathogenic microorganisms to be trapped, quickly killed, and cleared via mucociliary clearance, thus preventing microbial colonization of the lungs. In cystic fibrosis (CF), this activity is impaired, resulting in repeated pulmonary infections that damage the lung and, if severe and prolonged, may lead to premature death without lung transplantation. Available therapies remain focused on targeted rescue of the CFTR mutation. However, given …


Mucin And Splice Variant Profiles Of Pancreatic Adenocarcinoma Predict Patient Survival And Subtyping, Christopher M. Thompson May 2021

Mucin And Splice Variant Profiles Of Pancreatic Adenocarcinoma Predict Patient Survival And Subtyping, Christopher M. Thompson

Theses & Dissertations

PDAC is a pancreatic epithelial malignancy and demonstrates aggressive progression and bleak patient prognosis. Despite decades of research, the evolution of novel diagnostics and intervention modalities for PDAC is stagnant. This dissertation explores the characteristic aberrant and elevated expression of mucins in PDAC. Beginning with the hypothesis that mucins are associated with disease aggressiveness, analysis of PDAC patient survival in TCGA revealed no associations between single mucin expression and patient survival. This led to the underlying issue of PDAC tumor cellularity since this disease demonstrates variability in the proportion of cancer cells within the tumor. Tumor purity assessed with the …


Secreted Mucin 5ac-Mediated Epithelial And Stromal Modulations Augment Pancreatic Cancer Aggressiveness, Koelina Ganguly May 2021

Secreted Mucin 5ac-Mediated Epithelial And Stromal Modulations Augment Pancreatic Cancer Aggressiveness, Koelina Ganguly

Theses & Dissertations

The mucosal layer that shields the epithelium of the body cavities is made up of high molecular weight, heavily glycosylated proteins called mucins that are broadly categorized into transmembrane and secreted members. Aberrant expression of secreted mucin MUC5AC has been implicated in lung, stomach, and colon cancer pathologies. MUC5AC is expressed de novo in the pancreas upon oncogenic insult, and its abundance in pancreatic tumor and circulation correlates to disease progression. However, few studies have explored beyond the diagnostic and prognostic significance of MUC5AC in pancreatic cancer (PC).

In this dissertation, we sought to investigate the mechanistic contribution of MUC5AC …


Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza May 2021

Biochemical Characterization Of Small Molecule Inhibitor Binding On A Ras Related Gtpase And Its Effector Interactions, Djamali Muhoza

Graduate Theses and Dissertations

The Ras superfamily of GTPases has 167 proteins that are involved in various cellular processes such as proliferation, transformation, migration, and inhibition of cell death. Mutations, abnormal expression, and function of these proteins are observed in many diseases, including several forms of cancer. Even though these GTPases were among the first discovered oncogenes, no successful Ras drug candidate has successfully passed clinical trials. Drugs targeting these proteins have failed mainly because of the complexity of their regulation, their high affinity to GTP, and their structure’s dynamic nature. Recently, novel promising targeting approaches have renewed interest in the Ras drug discovery …


Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen May 2021

Discovery Of Novel Ubiquitin- And Methylation-Dependent Interactions Using Protein Domain Microarrays, Jianji Chen

Dissertations & Theses (Open Access)

Post-translational modifications (PTMs) drive signal transduction by interacting with "reader" proteins. Protein domain microarray is a high throughput platform to identify novel readers for PTMs. In this dissertation, I applied two protein domain microarrays identifying novel readers for histone H2Aub1 and H2Bub1, and H3TM K4me3. Ubiquitinations of histone H2A at K119 (H2Aub1) and histone H2B at K120 (H2Bub1) function in distinct transcription regulation and DNA damage repair pathways, likely mediated by specific "reader" proteins. There are only two H2Aub1-specific readers identified and no known H2Bub1-specific readers. Using a ubiquitin-binding domain microarray, I discovered the phospholipase A2-activating protein (PLAA) PFU domain …


Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender Apr 2021

Purification And Functional Characterization Of The Iron-Responsive Transcription Factor Aft1 From C. Glabrata, Jade Ikahihifo-Bender

Senior Theses

Due to its unique ability to serve as both an electron donor and acceptor, iron is utilized as a co-factor for many biological processes, including electron transfer, oxygen binding, and vitamin synthesis. Iron is also a key factor during fungal infections as the human host and invading pathogens battle over limited iron pools. The primary iron-responsive transcription factor Aft1 in the opportunistic pathogenic yeast Candida glabrata responds to iron deficiency by activating expression of iron acquisition genes. However, the mechanisms for sensing intracellular iron levels and regulating Aft1 activity in response to iron are unknown. The C. glabrata iron regulation …


Biophysical Characterization Of The Par-4 Tumor Suppressor: Evidence Of Structure Outside The Coiled Coil Domain And Interactions With Platinum Chemotherapeutics, Andrea Megan Clark Apr 2021

Biophysical Characterization Of The Par-4 Tumor Suppressor: Evidence Of Structure Outside The Coiled Coil Domain And Interactions With Platinum Chemotherapeutics, Andrea Megan Clark

Chemistry & Biochemistry Theses & Dissertations

Prostate apoptosis response-4 (Par-4) is an apoptosis-inducing tumor suppressor protein. Full-length Par-4 has previously been shown to be a predominantly intrinsically disordered protein (IDP) under neutral conditions, with significant regular secondary structure evident only within the C-terminal coiled coil domain. However, IDPs can gain ordered structure through the process of induced folding, which often occurs under non-neutral conditions. Previous work has shown that the Par-4 leucine zipper, which is a subset of the C-terminal coiled coil domain, is disordered under neutral conditions, but forms a dimeric coiled coil at acidic pH. Increase in ionic strength was also shown to increase …


Potential Counter Regulatory Effects Of A Gut Microbiota Metabolite In Alleviating Down-Regulation Krüppel-Like Factor 4 In Intestinal Inflammation, Ylva Forslund Jan 2021

Potential Counter Regulatory Effects Of A Gut Microbiota Metabolite In Alleviating Down-Regulation Krüppel-Like Factor 4 In Intestinal Inflammation, Ylva Forslund

Theses, Dissertations and Capstones

Inflammatory bowel disease (IBD) is a medical condition characterized by chronic inflammation of the intestinal epithelium. Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is vital for maintaining intestinal epithelial homeostasis. KLF4 promotes differentiation of goblet cells that generate the protective mucus layer. Reduced goblet cell number and defective mucus layer are associated with IBD. Shortchain fatty acids (SCFA) are known to play an important role in the maintenance of a strong and healthy intestinal epithelial layer and also in goblet cell differentiation. However, whether the positive effects of SCFAs on goblet cells are mediated, at least partly, via …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Influence Of Metal Sleeves In The Accuracy Of Dental Implant Placement Using Guided Implant Surgery, Coleman Adams Jan 2021

Influence Of Metal Sleeves In The Accuracy Of Dental Implant Placement Using Guided Implant Surgery, Coleman Adams

Theses and Dissertations

The fabrication of implant surgical guides through stereolithographic 3D printing has become a staple in dental implant guided surgery over the last couple decades. These surgical guides have typically utilized metal sleeves to assist in guidance of the drills during osteotome preparation. The metal sleeves can be costly and potentially cause deviations if improperly placed during post-processing of the guide. This research explored a novel method for the utilization of sleeve-free surgical guides by comparing the dimensional and angulational deviations between the implant guides with and without a metal sleeve. To achieve this goal, two separate aims were pursued. Our …


Characterization Of Cucurbitacin-Inspired Estrone Analogues As Novel Inhibitors Of Human Atp- Binding Cassette Proteins (Abcb1 And Abcc1), Jennifer Kyeremateng Jan 2021

Characterization Of Cucurbitacin-Inspired Estrone Analogues As Novel Inhibitors Of Human Atp- Binding Cassette Proteins (Abcb1 And Abcc1), Jennifer Kyeremateng

Electronic Theses and Dissertations

ATP-binding cassette (ABC) transporters are a large class of integral membrane proteins that contribute to key physiological functions in all organisms by utilizing ATP binding and hydrolysis to transport diverse substrates across membrane barriers. P-glycoprotein (P-gp/ ABCB1) and Multidrug Resistance protein 1 (MRP1/ABCC1) are widely reported ABC transporters associated with multidrug resistance in cancer. Multidrug resistance (MDR) mediated by P-gp and MRP1 is responsible for treatment failures of many metastatic cancers as a result of reduced accumulation, bioavailability and diminished potency of anticancer drugs. Currently, known P-gp and MRP1 inhibitors are limited due to toxicity, lack of selectivity and low …


Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant Jan 2021

Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant

Honors Theses

Laromustine is an experimental chemotherapeutic sulfonyl hydrazine prodrug shown in clinical trials to be effective against acute myeloid leukemia. The mechanism of action of laromustine involves interstrand crosslinking, via chloroethylation, and enzyme inhibition, caused by carbamoylation. The work described herein aims to investigate whether inhibition of the replication-dependent interstrand crosslink repair Fanconi Anemia pathway further sensitizes cells to laromustine. By measuring metabolic activity immediately after drug exposure, we find laromustine to be equally as cytotoxic towards Fanconi Anemia deficient and wild type cells. However, through clonogenic assays we show Fanconi Anemia mutations sensitize cells to laromustine’s anti-proliferative effect. Furthermore, we …