Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi Jan 2024

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi

Graduate Theses, Dissertations, and Problem Reports

Phosphodiesterase-6 (PDE6) serves as a pivotal component in the phototransduction pathways of both cone and rod photoreceptors. In cones, PDE6 consists of tetrameric subunits: inhibitory (γ') and catalytic (α'). The catalytic subunit, PDE6α', contains a C-terminal prenylation motif. Deletion of this motif is associated with achromatopsia (ACHM), a form of color blindness. The mechanisms underlying the disease and the roles of PDE6 lipidation in vision remain elusive. Meanwhile, rod PDE6 is composed of α and β catalytic subunits and γ inhibitory subunits, with alterations in the C-terminal "prenylation motif" of PDE6β linked to retinitis pigmentosa (RP) pathology. In this comprehensive …


The Function Of Protein Glutamylation In Vision, Rawaa Aljammal Jan 2024

The Function Of Protein Glutamylation In Vision, Rawaa Aljammal

Graduate Theses, Dissertations, and Problem Reports

Posttranslational glutamylation of protein has emerged as a novel candidate for cellular integrity. In a dynamic process, Tubulin Tyrosine Ligase Like proteins (TTLLs) introduce glutamate groups to their substrates, while Cytosolic Carboxypeptidases members (CCP1-CCP6) remove these glutamate groups. The outcome of this interplay is a wide range of substrates; each is glutamylated to a level crucial for its function.

Protein glutamylation is particularly abundant in neurons and in the axoneme of cilia and flagella. This distribution, along with the correlation between imbalanced glutamylation levels and compromised cellular functions, underscores the significance of protein glutamylation in maintaining cellular viability. However, the …


Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian Jan 2023

Extension Of The Ergot Alkaloid Gene Cluster, Samantha Joy Fabian

Graduate Theses, Dissertations, and Problem Reports

Specialized metabolites produced by fungi impact human health. A large portion of the pharmaceuticals currently on the market are derived from metabolites biosynthesized by microbes. Ergot alkaloids are a class of fungal metabolites that are important in the interactions of environmental fungi with insects and mammals and also are used in the production of pharmaceuticals. In animals, ergot alkaloids can act as partial agonists or antagonists at receptors for 5-hydroxytryptamine (serotonin), dopamine, and noradrenaline as ergot alkaloids have chemical structures similar to those neurotransmitters. Therefore, they affect insects and mammals that consume them and can be used to produce drugs …


The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore Jan 2021

The Receptor Basis Of Serotonergic Modulation In An Olfactory Network, Tyler Ryan Sizemore

Graduate Theses, Dissertations, and Problem Reports

Neuromodulation is a nearly ubiquitous process that endows the nervous system with the capacity to alter neural function at every level (synaptic, circuit, network, etc.) without necessarily adding new neurons. Through the actions of neuromodulators, the existing neural circuitry can be adaptively tuned to achieve flexible network output and similarly dynamic behavioral output. However, despite their near ubiquity in all sensory modalities, the mechanisms underlying neuromodulation of sensory processing remain poorly understood. In this dissertation, I address three main questions regarding the mechanisms of one modulator (serotonin) within one sensory modality (olfaction). I begin by establishing a "functional atlas" of …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …


Seastar: Systematic Evaluation Of Alternative Transcription Start Sites In Rna, Zhiyi Qin, Peter Stoilov, Xuegong Zhang, Yi Xing Jan 2018

Seastar: Systematic Evaluation Of Alternative Transcription Start Sites In Rna, Zhiyi Qin, Peter Stoilov, Xuegong Zhang, Yi Xing

Faculty & Staff Scholarship

Alternative first exons diversify the transcriptomes of eukaryotes by producing variants of the 5′ Untrans- lated Regions (5′UTRs) and N-terminal coding se- quences. Accurate transcriptome-wide detection of alternative first exons typically requires specialized experimental approaches that are designed to iden- tify the 5′ ends of transcripts. We developed a compu- tational pipeline SEASTAR that identifies first exons from RNA-seq data alone then quantifies and com- pares alternative first exon usage across multiple bi- ological conditions. The exons inferred by SEASTAR coincide with transcription start sites identified di- rectly by CAGE experiments and bear epigenetic hall- marks of active promoters. To …