Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Toward Biochemical Conversion Of Lignocellulose On-Farm: Pretreatment And Hydrolysis Of Corn Stover In Situ, Alicia A. Modenbach, Sue E. Nokes, Michael D. Montross, Barbara L. Knutson Jan 2017

Toward Biochemical Conversion Of Lignocellulose On-Farm: Pretreatment And Hydrolysis Of Corn Stover In Situ, Alicia A. Modenbach, Sue E. Nokes, Michael D. Montross, Barbara L. Knutson

Biosystems and Agricultural Engineering Faculty Publications

High-solids lignocellulosic pretreatment using NaOH followed by high-solids enzymatic hydrolysis was evaluated for an on-farm biochemical conversion process. Increasing the solids loadings for these processes has the potential for increasing glucose concentrations and downstream ethanol production; however, sequential processing at high-solids loading similar to an on-farm cellulose conversion system has not been studied. This research quantified the effects of high-solids pretreatment with NaOH and subsequent high-solids enzymatic hydrolysis on cellulose conversion. As expected, conversion efficiency was reduced; however, the highest glucose concentration (40.2 g L-1), and therefore the highest potential ethanol concentration, resulted from the high-solids combined pretreatment …


Influence Of Media Composition On The Growth Rate Of Chlorella Vulgaris And Scenedesmus Acutus Utilized For Co2 Mitigation, Czarena L. Crofcheck, Xinyi E, Aubrey Shea, Michael D. Montross, Mark Crocker, Rodney Andrews Jun 2013

Influence Of Media Composition On The Growth Rate Of Chlorella Vulgaris And Scenedesmus Acutus Utilized For Co2 Mitigation, Czarena L. Crofcheck, Xinyi E, Aubrey Shea, Michael D. Montross, Mark Crocker, Rodney Andrews

Biosystems and Agricultural Engineering Faculty Publications

Atmospheric carbon dioxide levels have increased since the industrial revolution due to increasing combustion of fossil fuels. One possible CO2 mitigation strategy is the use of microalgae for mitigation of CO2. This paper focuses on the influence of media composition on the growth rate of two microalgae strains, Chlorella vulgaris and Scenedesmus actus. A KNO3 based medium was found to work better for Chlorella, while a urea based equivalent worked better for Scenedesmus. The urea based media investigated here resulted in growth similar to that found with previously reported KNO3 based media. …