Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Old Dominion University

Electroporation

Articles 1 - 11 of 11

Full-Text Articles in Biochemistry

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with …


Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič Jan 2016

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič

Bioelectrics Publications

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1–10 ns, B: 11–100 ns and C: …


Diffuse, Non-Polar Electropermeabilization And Reduced Propidium Uptake Distinguish The Effect Of Nanosecond Electric Pulses, Iurii Semenov, Christian W. Zemlin, Olga N. Pakhomova, Shu Xiao, Andrei G. Pakhomov Jan 2015

Diffuse, Non-Polar Electropermeabilization And Reduced Propidium Uptake Distinguish The Effect Of Nanosecond Electric Pulses, Iurii Semenov, Christian W. Zemlin, Olga N. Pakhomova, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Ca2+ activation and membrane electroporation by 10-ns and 4-ms electric pulses (nsEP and msEP) were compared in rat embryonic cardiomyocytes. The lowest electric field which triggered Ca2+ transients was expectedly higher for nsEP (36 kV/cm)than forms EP (0.09 kV/cm) but the respective doses were similar (190 and460 mJ/g). At higher intensities, both stimuli triggered prolonged firing in quiescent cells. An increase of basal Ca2+ level by N10 nM in cells with blocked voltage-gated Ca2+ channels and depleted Ca2+ depot occurred at 63 kV/cm (nsEP) or 0.14 kV/cm (msEP) and was regarded as electroporation threshold. These …


Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov Jan 2014

Calcium-Mediated Pore Expansion And Cell Death Following Nanoelectroporation, Olga N. Pakhomova, Betsy Gregory, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Opening of long-lived pores in the cell membrane is the principal primary effect of intense, nanosecond pulsed electric field (nsPEF). Here we demonstrate that the evolution of pores, cell survival, the time and the mode of cell death (necrotic or apoptotic) are determined by the level of external Ca2+ after nsPEF. We also introduce a novel, minimally disruptive technique for nsEP exposure of adherent cells on indium tin oxide (ITO)-coated glass coverslips, which does not require cell detachment and enables fast exchanges of bath media. Increasing the Ca2+ level from the nominal 2–5 μM to 2 mM for …


Primary Pathways Of Intracellular Ca2+ Mobilization By Nanosecond Pulsed Electric Field, Iurii Semenov, Shu Xiao, Andrei G. Pakhomov Jan 2013

Primary Pathways Of Intracellular Ca2+ Mobilization By Nanosecond Pulsed Electric Field, Iurii Semenov, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Permeabilization of cell membranous structures by nanosecond pulsed electric field (nsPEF) triggers transient rise of cytosolic Ca2+ concentration ([Ca2+]i), which determines multifarious downstream effects. By using fast ratiometric Ca2+ imaging with Fura-2, we quantified the external Ca2+ uptake, compared it with Ca2+ release from the endoplasmic reticulum (ER), and analyzed the interplay of these processes. We utilized CHO cells which lack voltage-gated Ca2+ channels, so that the nsPEF-induced [Ca2+]i changes could be attributed primarily to electroporation. We found that a single 60-ns pulse caused fast [Ca2+]i increase …


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov Jan 2012

Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1–13 kV/cm) was assessed by oxidation of 2′, 7′-dichlorodihydrofluoresein (H2DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H2DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2′,7′dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat …


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly …


Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller Dec 2008

Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller

Bioelectrics Publications

BACKGROUND: Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery.

METHODS: Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model.

RESULTS: Experiments …


Stimulation Of Capacitative Calcium Entry In Hl-60 Cells By Nanosecond Pulsed Electric Fields, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Stephen J. Beebe Jan 2004

Stimulation Of Capacitative Calcium Entry In Hl-60 Cells By Nanosecond Pulsed Electric Fields, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Stephen J. Beebe

Bioelectrics Publications

Nanosecond pulsed electric fields (nsPEFs) are hypothesized to affect intracellular structures in living cells providing a new means to modulate cell signal transduction mechanisms. The effects of nsPEFs on the release of internal calcium and activation of calcium influx in HL-60 cells were investigated by using real time fluorescent microscopy with Fluo-3 and fluorometry with Fura-2. nsPEFs induced an increase in intracellular calcium levels that was seen in all cells. With pulses of 60 ns duration and electric fields between 4 and 15 kV/cm, intracellular calcium increased 200-700 nM, respectively, above basal levels (similar to100 nM), while the uptake of …