Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian Jan 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


Regulation Of Intracellular Calcium Concentration By Nanosecond Pulsed Electric Fields, Shaka S. Scarlett, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Juergen Kolb Jan 2009

Regulation Of Intracellular Calcium Concentration By Nanosecond Pulsed Electric Fields, Shaka S. Scarlett, Jody A. White, Peter F. Blackmore, Karl H. Schoenbach, Juergen Kolb

Bioelectrics Publications

Changes in [Ca2+]i response of individual Jurkat cells to nanosecond pulsed electric fields (nsPEFs) of 60 ns and field strengths of 25, 50, and 100 kV/cm were investigated. The magnitude of the nsPEF-induced rise in [Ca2+]i was dependent on the electric field strength. With 25 and 50 kV/cm, the [Ca2+]i response was due to the release of Ca2+ from intracellular stores and occurred in less than 18 ms. With 100 kV/cm, the increase in [Ca2+]i was due to both internal release and to influx across the plasma …