Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

2022

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 85

Full-Text Articles in Biochemistry

Compatibility Of Crude Oil Blends─Processing Issues Related To Asphaltene Precipitation, Methods Of Instability Prediction─A Review, Krzysztof Bambinek, Andrzej Przyjazny, Grzegorz Boczkaj Dec 2022

Compatibility Of Crude Oil Blends─Processing Issues Related To Asphaltene Precipitation, Methods Of Instability Prediction─A Review, Krzysztof Bambinek, Andrzej Przyjazny, Grzegorz Boczkaj

Natural Sciences Publications

Processing crude oil of variable composition, especially due to the need to process crude oil blends obtained from various sources, presents a tremendous process challenge. This is mainly due to the destabilization of the colloidal system manifested mostly by the precipitation of the asphaltene fraction. The precipitation of asphaltenes from crude oil is a serious problem during extraction, transport, and processing. In the latter case, engineers and scientists have spent a lot of time determining what mechanisms are conducive to the occurrence of this phenomenon. On the one hand, there was a scientific curiosity about the principles of the nanoworld …


Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez Dec 2022

Arginine Methylation Of The Pgc-1Α C‑Terminus Is Temperature- Dependent, Meryl Mendoz, Mariel Mendoza, Tiffany Lubrino, Sidney Briski, Immaculeta Osuji, Janielle Cuala, Brendan Ly, Ivan Ocegueda, Harvey Peralta, Benjamin A. Garcia, Cecilia Zurita-Lopez

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We set out to determine whether the C-terminus (amino acids 481–798) of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α, UniProt Q9UBK2), a regulatory metabolic protein involved in mitochondrial biogenesis, and respiration, is an arginine methyltransferase substrate. Arginine methylation by protein arginine methyltransferases (PRMTs) alters protein function and thus contributes to various cellular processes. In addition to confirming methylation of the C-terminus by PRMT1 as described in the literature, we have identified methylation by another member of the PRMT family, PRMT7. We performed in vitro methylation reactions using recombinant mammalian PRMT7 and PRMT1 at 37, 30, 21, 18, and 4 °C. …


Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez Dec 2022

Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez

Electronic Theses and Dissertations

Biophysical phenomena are modeled using a combination of quantum and classical methods to interpret and supplement three distinct and diverse problems in this dissertation. In the first project, decarboxylation reactions are ubiquitous across chemical and biological disciplines, yet the origin of non-catalytic solvent effects remains elusive. Specific solvent structure and energetics have not been well described for the monoanion of malonate, nor corrected from the gas-phase charge-assisted intramolecular hydrogen bond model known as “pseudochair”. In the aqueous phase, a low-lying energy conformer known as the “orthogonal conformation” is computed to be preferred by a three-water cluster of hydrogen bonding over …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


Functional Characterization Of The Newly Discovered Type V Crispr-Cas Protein Cas12a2, Dylan J. Keiser Dec 2022

Functional Characterization Of The Newly Discovered Type V Crispr-Cas Protein Cas12a2, Dylan J. Keiser

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Similarly to people, bacteria are under the treat of infection by viruses. To circumvent these threats, bacteria evolve complex immune systems. Our understanding of some of these immune systems has led to many advancements in the field of Biotechnology including tools that made expressing proteins for study in a lab easier, tools that revolutionized the feasibility of gene editing, and tools that could change the way we think about viral diagnostics and cancer therapeutics. A certain type of immune system that bacteria use to fight virus is called a CRISPR system. Presented here is work to understand the function of …


The Binding Of The Micronutrient Transition Metals To The Alkylation Products Of Chemical Warfare Agent, Sulfur Mustard, And Thiols, Potentially Giving New Understanding To Physiological Effects Of Exposure And Increased Toxicity, Colin O'Donnell Dec 2022

The Binding Of The Micronutrient Transition Metals To The Alkylation Products Of Chemical Warfare Agent, Sulfur Mustard, And Thiols, Potentially Giving New Understanding To Physiological Effects Of Exposure And Increased Toxicity, Colin O'Donnell

Graduate Theses and Dissertations

Model compounds, 3,6,9-trithaiundecane-1,11-dicarboxylic acid (TTDPA), 2,5,8-trithianonane-1,9-dicarboxylic acid (TTDAA), and 1,11-diamide-3,6,9-trithiaundecane (TTDAce), closely related to the adducts formed by cysteine alkylation of the chemical weapon, sulfur mustard, were synthesized. It is shown that TTDPA forms complexes with key metal micronutrients: copper, nickel, cobalt, manganese, and zinc. Though the strength of binding to TTDPA varies, the complexes in many cases precipitate from solution. All metals produced a visible precipitate upon interaction with TTDPA under the conditions tested, however only Cu2+, Mn2+, and Zn2+ produced enough to be measured. The mass of formed precipitate seemed to peak at an equimolar ratio of TTDPA …


Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa Dec 2022

Using Molecular Dynamics Simulations To Decipher Mechanistic Details Of Biomolecular Processes Of Biology And Biotechnology Oriented Applications, Adithya Polasa

Graduate Theses and Dissertations

Researchers in chemistry and biology often utilize computer simulations, in conjunction with experimental data, to model and predict the structures, energies, kinetics, processes, and functions of the systems that are their focus of study, ranging from single molecules to whole viruses. Here, we use molecular dynamics (MD) techniques to gain a deeper understanding of biomolecular processes in biology and biotechnology-oriented applications. Using a mixture of equilibrium and non-equilibrium MD simulations, this work describes the insertion process of YidC at the atomic level. In order to better comprehend the insertion process, several docking models of YidC-Pf3 in the lipid bilayer were …


Characterization Of The Isothermal Titration Calorimetry Single Injection Method Using T4 Polynucleotide Kinase As A Model System For Kinases, Rebecca Chaehee Lim Dec 2022

Characterization Of The Isothermal Titration Calorimetry Single Injection Method Using T4 Polynucleotide Kinase As A Model System For Kinases, Rebecca Chaehee Lim

UNLV Theses, Dissertations, Professional Papers, and Capstones

Kinases are an important class of enzymes involved in the regulation of different cellular processes. The dysfunctional activity, either hyperactivity or inactivity, of kinases has been associated with many types of diseases, making kinases a major therapeutic target. As of 2020, more than 80 kinase inhibitors have been FDA-approved and have revolutionized the treatment for progressive disorders such as cancers and Alzheimer's diseases. However, there is always the possibility of developing severe side effects or resistance to drugs so the search for new therapeutics must continue with efficiency and accuracy.Isothermal titration calorimetry (ITC) is a state-of-the-art technique specialized in detecting …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


Nucleobase-Modified Nucleosides And Nucleotides: Applications In Biochemistry, Synthetic Biology, And Drug Discovery, Anthony J. Berdis Nov 2022

Nucleobase-Modified Nucleosides And Nucleotides: Applications In Biochemistry, Synthetic Biology, And Drug Discovery, Anthony J. Berdis

Chemistry Faculty Publications

DNA is often referred to as the "molecule of life " since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, …


Conformational Dynamics And Aggregation Of Thermally Stressed Proteins Studied By Hydrogen/Deuterium Exchange Mass Spectrometry, Nastaran Nosrat Tajoddin Oct 2022

Conformational Dynamics And Aggregation Of Thermally Stressed Proteins Studied By Hydrogen/Deuterium Exchange Mass Spectrometry, Nastaran Nosrat Tajoddin

Electronic Thesis and Dissertation Repository

Proteins perform various biological functions, e.g., as enzymes or transporters. In addition to naturally occurring proteins, the use of protein therapeutic drugs for treating cancer and other diseases is a rapidly growing area. A thorough biophysical characterization of proteins and protein therapeutics opens the door to a more comprehensive understanding of their role in health and disease. This dissertation aims to expand the capabilities of an existing technique (Hydrogen Deuterium Exchange Mass Spectrometry, HDX-MS), which is widely used for probing protein structure and dynamics. Conventionally, HDX-MS experiments are performed as a function of labelling time. Here we aim to establish …


3,6-Dimethoxyxanthone From 2,2’,4,4’- Tetrahydroxy-Benzophenone Via Microwave-Assisted Annulation, Sarah E. Knisely, Faith R. Rosario, Salem F. Gebeyehu, Paige E. Heiple, Robert E. Lee Sr Oct 2022

3,6-Dimethoxyxanthone From 2,2’,4,4’- Tetrahydroxy-Benzophenone Via Microwave-Assisted Annulation, Sarah E. Knisely, Faith R. Rosario, Salem F. Gebeyehu, Paige E. Heiple, Robert E. Lee Sr

Journal of the South Carolina Academy of Science

Xanthones are tricyclic aromatic compounds that have multiple pharmacological uses due to their anti-tumor, antioxidant, anti-inflammatory, anti-bacterial, and potentially chemopreventive properties. The target of this research was to optimize a two-step synthesis of 3,6-dimethoxyxanthone (3) from 2,2’,4,4’-tetrahydroxy-benzophenone (1) via microwave-assisted (200 °C, 30-40 min., 150 W) sodium acetate-catalyzed annulation. The product, 3,6-dihydroxyxanthone (2), was then methylated to (3) using dimethyl sulfate (DMS) and sodium carbonate in acetone at reflux. The product yields were 93% (>99% purity) for (2) and 94% (>99% purity) for (3). Characterization was accomplished using 1H NMR, FTIR, melting point, TLC, HPLC, and GCMS. …


Stemficohort1preinterviewdata, Rebecca L. Sansom, Bryn Stclair, Jamie Jensen, Richard West Oct 2022

Stemficohort1preinterviewdata, Rebecca L. Sansom, Bryn Stclair, Jamie Jensen, Richard West

ScholarsArchive Data

The science, technology, engineering, and mathematics faculty institute (STEMFI) is a National Science Foundation funded project designed to provide support, measurement, and training to BYU faculty developing their own student-centered curriculum.

This PDF file contains pre-institute participation interview data from the first cohort of faculty involved in the STEM faculty institute (2018).


Structural And Functional Studies Of Mtr4 And The Tramp Rna Surveillance Complex, Sean Johnson Sep 2022

Structural And Functional Studies Of Mtr4 And The Tramp Rna Surveillance Complex, Sean Johnson

Funded Research Records

No abstract provided.


Collaborative Research: Developing Advanced Magnesium Electrolytes Toward Low Cost, High Energy Density Mg Batteries, Tianbiao Liu Aug 2022

Collaborative Research: Developing Advanced Magnesium Electrolytes Toward Low Cost, High Energy Density Mg Batteries, Tianbiao Liu

Funded Research Records

No abstract provided.


A Natural Deep Eutectic Solvent - Protonated L-Proline-Xylitol - Based Stationary Phase For Gas Chromatography, Malwina Momotko, Justyna Łuczak, Andrzej Przyjazny, Grzegorz Boczkaj Aug 2022

A Natural Deep Eutectic Solvent - Protonated L-Proline-Xylitol - Based Stationary Phase For Gas Chromatography, Malwina Momotko, Justyna Łuczak, Andrzej Przyjazny, Grzegorz Boczkaj

Natural Sciences Publications

The paper presents a new kind of stationary phase for gas chromatography based on deep eutectic solvents (DES) in the form of a mixture of L-proline (protonated with hydrochloric acid) as a hydrogen bond acceptor (HBA) and xylitol as a hydrogen bond donor (HBD) in a molar ratio of HBA:HBD 5:1. DES immobilized on a silanized chromatographic support was tested by gas chromatography (GC) in order to determine its resolving power for volatile organic compounds. Studies have demonstrated the suitability of this type of DES as a stationary phase for GC. The Rohrschneider-McReynolds constants were determined for the synthesized DES, …


An Ims-Ms/Md Workflow For Determining Higher Order Structure And Dynamics Of Nucleic Acids, Rebecca D'Esposito Aug 2022

An Ims-Ms/Md Workflow For Determining Higher Order Structure And Dynamics Of Nucleic Acids, Rebecca D'Esposito

Legacy Theses & Dissertations (2009 - 2024)

Ion mobility spectrometry - mass spectrometry (IMS-MS) has potential for the investigation of structure and dynamics in large biopolymers, which will come to full fruition only with a firmer understanding of how to interpret the experimental data. Numerous studies have employed elements of nucleic acid (NA) secondary structure, such as duplexes and hairpins, to explore the relationships between structure, experimental conditions, and actual observations. When combined with molecular dynamics simulations (MDS), IMS-MS can be effectively employed to perform structural elucidation of biomolecules that are not readily amenable to established techniques employed for structural analysis.


Amyloid Fibril Formation And Polymorphism : A Critical Role Of Sulfur-Containing Amino Acid Residues, Tatiana Quiñones-Ruiz Aug 2022

Amyloid Fibril Formation And Polymorphism : A Critical Role Of Sulfur-Containing Amino Acid Residues, Tatiana Quiñones-Ruiz

Legacy Theses & Dissertations (2009 - 2024)

Protein aggregation that results in the formation of amyloid fibrils has been linked to many neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. The sulfur atoms in methionine (Met) and cysteine (Cys) residues of proteins can be readily oxidized, significantly affecting their properties. Oxidation of sulfur-containing amino acids has recently been shown to affect protein fibrillation. This work presents novel findings on Cys and Met redox reactions that are related to the formation of amyloid fibrils and on the polymorphism of a model fibrillogenic protein, hen egg white lysozyme (HEWL). Biophysical techniques including Raman spectroscopy, atomic force microscopy, electron paramagnetic …


Clostridioides Difficile Biofilm And Spore Production In Response To Antibiotics And Immune Stress, Adenrele M. Oludiran Aug 2022

Clostridioides Difficile Biofilm And Spore Production In Response To Antibiotics And Immune Stress, Adenrele M. Oludiran

Chemistry & Biochemistry Theses & Dissertations

The development of new therapeutic options against Clostridioides difficile (C. difficile) infection is a critical public health concern, as the causative bacterium is highly resistant to multiple classes of antibiotics. C. difficile, an anaerobic spore-forming Gram-positive pathogenic bacterium, is a major cause of hospital-acquired infections. C. difficile persists in the environment and spreads the infection to new hosts in the form of dormant spores and can persist within hosts as surface-attached biofilms. These studies investigate bacterial vegetative cell survival, biofilm formation, and sporulation in response to stress. Antimicrobial host-defense peptides (HDPs) are highly effective at simultaneously modulating …


Growth Outcomes Of Pseudomonas Aeruginosa Inhibitor Of Vertebrate Lysozyme Knockouts In Conditions Mimicking The Cystic Fibrosis Lung Environment, Amani Gaddy Jul 2022

Growth Outcomes Of Pseudomonas Aeruginosa Inhibitor Of Vertebrate Lysozyme Knockouts In Conditions Mimicking The Cystic Fibrosis Lung Environment, Amani Gaddy

Master of Science in Chemical Sciences Theses

Pseudomonas aeruginosa (PA) is a Gram-negative bacterium, often found in cystic fibrosis (CF) patients and can lead to the decline of lung functioning and premature death in 80% of infected patients when microcolonies form within the mucin of the lung. Due to its major capacity for antibiotic resistance, an alternative strategy towards defending against the bacterial invasion of PA is by the antibacterial activity of our own innate immune system with use of elements such as lysozyme. Pseudomonas aeruginosa inhibitor of vertebrate lysozyme class 1 (Ivyp1) is a periplasmic protein produced by gram-negative bacteria that inhibits the enzymatic activity of …


Quantifying Protein Quality To Understand Protein Homeostasis (Supplemental Data), Hsien-Jung Lavender Lin Jul 2022

Quantifying Protein Quality To Understand Protein Homeostasis (Supplemental Data), Hsien-Jung Lavender Lin

ScholarsArchive Data

This data set includes the supplementary data for chpaters 3 and 4 in the dissertation Quantifying Protein Quality to Understand Protein Homeostasis. It includes various excel worksheets that were used to generate the data reported in the dissertation. We make this data available to the public so anyone who wants to reproduce the results has the resources and access to other perspectives that weren't discussed in depth in the dissertation. Chapter 3 used mass-spectrometry to quantify the surface accessibility differences in human serum albumin (HSA)between patients with and without rheumatoid arthritis (RA). We found certain residues are less reactive …


Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett Jun 2022

Mechanism Of Sila- And Germafluorenes For Biological Applications, Shelby Jarrett

Dissertations

2,7-disubstituted silafluorenes and germafluorenes, originally designed for OLED applications, are a class of fluorescent dyes that have gained recent interest as probes for bioimaging and as biosensors to monitor cellular dynamics and interactions. Desirable biological probes absorb in the visible region, have high extinction coefficients, high quantum yield and excellent photostability. Here, their spectral properties are investigated under aqueous conditions for relevant biological applications. These molecules display intense blue fluorescence in the solid state and in solution, have high extinction coefficients, and exhibit appreciable solubility in aqueous solution. To better understand potential applications, the mechanism of fluorescence was investigated. It …


New Simple And Robust Method For Determination Of Polarity Of Deep Eutectic Solvents (Dess) By Means Of Contact Angle Measurement, Łukasz Cichocki, Dorota Warmińska, Justyna Łuczak, Grzegorz Boczkaj, Andrzej Przyjazny Jun 2022

New Simple And Robust Method For Determination Of Polarity Of Deep Eutectic Solvents (Dess) By Means Of Contact Angle Measurement, Łukasz Cichocki, Dorota Warmińska, Justyna Łuczak, Grzegorz Boczkaj, Andrzej Przyjazny

Natural Sciences Publications

The paper presents a new method for evaluating the polarity and hydrophobicity of deep eutectic solvents (DESs) based on the measurement of the DES contact angle on glass. DESs consisting of benzoic acid derivatives and quaternary ammonium chlorides–tetrabutylammonium chloride (TBAC) and benzyldimethylhexadecylammonium chloride (16-BAC)—in selected molar ratios were chosen for the study. To investigate the DESs polarity, an optical goniometer and an ET(30)" role="presentation" style="box-sizing: border-box; max-height: none; display: inline; line-height: normal; font-size: 13.2px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: rgb(34, 34, 34); font-family: Arial, …


Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye Jun 2022

Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye

Faculty Publications

A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped …


Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye Jun 2022

Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darren Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye

Faculty Publications

A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped …


Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darrone Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye Jun 2022

Luminescence And Scintillation In The Niobium Doped Oxyfluoride Rb4Ge5O9F6:Nb, Darrone Carone, Vladislav V. Klepov, Scott T. Misture, Joseph C. Schaeperkoetter, Luiz G. Jacobsohn, Mina Aziziha, Juliano Schorne-Pinto, Stuart A. J. Thomson, Adrian T. Hines, Theodore M. Besmann, Hans Conrad Zur Loye

Faculty Publications

A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthe-sized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystal-lizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.98430(10)Å,b= 11.7265(2) Å,andc= 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9units connectedby GeO3F3octahedra. In its pure form, Rb4Ge5O9F6shows neither luminescence nor scintillation butwhen doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. Theisostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space groupPbcnwith lattice parametersa= 6.9960(3) Å,b= 11.7464(6) Å, andc= 19.3341(9) Å. X-ray absorption nearedge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggestthat the niobium …


The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs Jun 2022

The Regulation Of Atg9a-Mediated Aggrephagy By An Ulk1-Independent Atg13-Atg101 Complex, Joshua Youngs

Undergraduate Honors Theses

Aggrephagy, a type of autophagy, is an essential cellular process by which protein aggregates are collected and broken down in the lysosome. Protein aggregates are implicated in several diseases including Alzheimer’s disease, diabetes, and cancer. Here, we investigate the ATG13-ATG101 protein complex, a sub-complex of the canonical ULK1 complex whose regulatory role in aggrephagy is not completely understood. We also develop a protein fragment complementation (PFC) assay using the biotin ligase TurboID to study the functions of the ATG13-ATG101 complex with increased specificity. We demonstrate that ATG13 is required for optimal degradation of p62-ubiquitin condensates. We also show that a …


Collaborative Research: Surface-Specific Aerosol Chemistry: Direct Observations, Kinetics, And Environmental Impact, Yi Rao Jun 2022

Collaborative Research: Surface-Specific Aerosol Chemistry: Direct Observations, Kinetics, And Environmental Impact, Yi Rao

Funded Research Records

No abstract provided.


Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik Jun 2022

Understanding Rapid Intercalation Materials One Parameter At A Time, Wessel Van Den Bergh, Morgan Stefik

Faculty Publications

Demand for fast, energy-dense storage drives the research into nanoscale intercalation materials. Nanomaterials accelerate kinetics and can modify reaction path thermodynamics, intercalant solubility, and reversibility. The discovery of intercalation pseudocapacitance has opened questions about their fundamental operating principles. For example, are their capacitor-like current responses caused by storing energy in special near-surface regions or rather is this response due to normal intercalation limited by a slower faradaic surface-reaction? This review highlights emerging methods combining tailored nanomaterials with the process of elimination to disambiguate cause-and-effect at the nanoscale. This method is applied to multiple intercalation pseudocapacitive materials showing that the timescales …


Targeting Heat Shock 27 Kda Protein Induces Androgen Receptor Degradation, Yaxin Li May 2022

Targeting Heat Shock 27 Kda Protein Induces Androgen Receptor Degradation, Yaxin Li

ETD Archive

Glioblastoma (GBM) is the most common and aggressive brain tumor, with very poor prognosis. Androgen receptor (AR) plays a significant role in the progression of GBM, and anti-androgen agents have the potential to be used for the treatment of GBM. However, AR mutation commonly happens in GBM, which makes the anti-androgen agents less effective. Heat shock 27 kDa protein (HSP27) is a well-documented chaperone protein to stabilize AR. Inhibition of HSP27 results in AR degradation regardless the mutation status of AR, which makes HSP27 a good target to abolish AR in GBM. Identified compound I ((N-(3-((2,5-dimethoxybenzyl)oxy)-4-(methylsulfonamido) phenyl)-4-methoxybenzamide) inhibits GBM cell …