Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Theses/Dissertations

2018

Institution
Keyword
Publication

Articles 1 - 30 of 37

Full-Text Articles in Biochemistry

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue Dec 2018

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue

Dissertations & Theses (Open Access)

Transcription is strictly regulated by numerous factors including transcription coactivators. The p300 protein and its close paralogue CREB-binding protein (CREBBP, aka CBP) are well-known transcriptional coactivators that have intrinsic lysine acetyltransferase activity. The functions of p300/CBP largely rely on their capabilities to bind to chromatin and to acetylate the histone substrates. However, the molecular mechanisms underlying the regulation of these processes are not fully understood.

Through combination of various biochemical, biophysical and molecular approaches, we show that the ZZ-type zinc finger (ZZ) domain of p300 functions as a histone reader that specifically binds the N-terminal tail of histone H3. Crystal …


Fatty Acid Amides And Their Biosynthetic Enzymes Found In Insect Model Systems, Ryan L. Anderson Nov 2018

Fatty Acid Amides And Their Biosynthetic Enzymes Found In Insect Model Systems, Ryan L. Anderson

USF Tampa Graduate Theses and Dissertations

A fatty acid amide is precisely as the name suggests: A fatty acid (CHn-COOH), in which the hydroxyl group of the carboxylic acid is displaced by an amine functional group from a biogenic amine (R-NH2), ultimately forming an amide bond. Furthermore, these fatty acid amides can be composed of a variety of different acyl chain lengths donated by the fatty acid and a myriad of different biogenic amines. Thus, these molecules can be subdivided in a number of different ways including the separation of short chain (acetyl to heptanoyl) and long chain (palmitoyl to arachidonoyl) and also based off the …


Investigating The Roles Of Fucosylation And Calcium Signaling In Melanoma Invasion, Tyler S. Keeley Nov 2018

Investigating The Roles Of Fucosylation And Calcium Signaling In Melanoma Invasion, Tyler S. Keeley

USF Tampa Graduate Theses and Dissertations

Melanoma is the deadliest form of skin cancer. Prognosis for early stage melanoma patients is excellent, and surgery is often curative for these patients. However, once patients have presented with invasive disease, the average 5-year survival rate drops significantly from over 90% to between 10 and 15%. Several therapies have been developed to target a commonly mutated oncogene BRAF, or its downstream effectors. Unfortunately, while these treatments show robust initial response, most patients relapse within a year. Moreover, therapy-resistant tumors are often more invasive and metastatic. Therefore, it is important to investigate the molecular mechanisms underlying melanoma invasion and metastasis, …


Identifying Functional Components Of The Endoplasmic Reticulum Quality Control And Degradation Factor Edem1, Lydia Lamriben Nov 2018

Identifying Functional Components Of The Endoplasmic Reticulum Quality Control And Degradation Factor Edem1, Lydia Lamriben

Doctoral Dissertations

The ER Degradation-Enhancing Mannosidase-Like protein 1 (EDEM1) is a critical endoplasmic reticulum (ER) quality control factor involved in identifying and directing non-native proteins to the ER-associated protein degradation (ERAD) pathway. However, its recognition and binding properties have remained enigmatic since its discovery. Here we provide evidence for an additional redox-sensitive interaction between EDEM1 and Z/NHK that requires the presence of the single Cys on the α-1 antitrypsin ERAD clients. Moreover, this Cys-dependent interaction is necessary when the proteins are isolated under stringent detergent conditions, ones in which only strong covalent interactions can be sustained. This interaction is inherent to the …


Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo Sep 2018

Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo

Dissertations, Theses, and Capstone Projects

Apolipoprotein L-1 (APOL1) is a secreted protein that provides protection against several protozoan parasites due to its channel forming properties. Recently evolved variants, G1 and G2, increase kidney disease risk when present in two copies. In mammalian cells, overexpression of G1 and G2, but not wild-type G0, leads to swelling and eventual lysis. However, the mechanism of cell death remains elusive with multiple pathways being invoked, such as autophagic cell death mediated by a BH3 domain in APOL1, which we evaluated in this study. We hypothesized that the common trigger for these pathways is the APOL1 cation channel, which is …


Phospholipase D-Dependent Mtorc1 Activation By Glutamine, Elyssa Bernfeld Sep 2018

Phospholipase D-Dependent Mtorc1 Activation By Glutamine, Elyssa Bernfeld

Dissertations, Theses, and Capstone Projects

Glutamine, the conditionally essential amino acid and most abundant amino acid in human sera, is a key nutrient required for sustaining cell proliferation. Glutamine is essential for nucleotide, protein, and lipid synthesis, all of which are essential for cell proliferation. The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex that acts as a sensor of nutrients, relaying signals for the shift from catabolic to anabolic metabolism. While glutamine plays an important role in activating mTORC1, the mechanism is not completely clear. Here we describe a Rag-independent mechanism of mTORC1 activation by glutamine that is dependent …


Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh Aug 2018

Direct Quantification Of Deubiquitinating Enzyme Activity In Single Intact Cells, Nora Safabakhsh

LSU Doctoral Dissertations

Challenges in drug efficacy occur during the treatment of most types of cancer due to the heterogeneity of the tumor microenvironment. This has led to the development of personalized medicine. Due to the clinical success of the proteasome inhibitors Bortezomib and Carfilzomib in treatment of multiple myeloma, interest has shifted towards molecularly-targeted chemotherapeutics for ubiquitin-proteasome system (UPS). Deubiquitinating enzymes (DUBs) are an essential part of this pathway which have been found to promote Bortezomib resistance in multiple myeloma patients. Unfortunately, there is a lack of specific, high throughput biochemical assays to characterize DUB activity in patient samples before and after …


The Regulation Of Notch Signaling By Src Kinase And Polyphenolic Compounds, Bryce David Lafoya Aug 2018

The Regulation Of Notch Signaling By Src Kinase And Polyphenolic Compounds, Bryce David Lafoya

Boise State University Theses and Dissertations

Cellular signaling pathways provide cells with the means to sense their environment and communicate with other cells. The Notch signaling pathway is comprised of a set of protein machines which work in unison to coordinate cellular processes in response to stimuli coming from neighboring cells and changing microenvironmental conditions. Notch signaling is an important mode of cellular communication which is crucial to many processes involved in development and disease. During Notch activation, information about the extracellular environment is fed into the cell and relayed to the nucleus through a number of biochemical processes. The information-rich messages carried by Notch signaling …


Characterization Of A Variant Of Tuberous Sclerosis Complex 2 And Its Interaction With Rheb, Sowmya Sivakumar Aug 2018

Characterization Of A Variant Of Tuberous Sclerosis Complex 2 And Its Interaction With Rheb, Sowmya Sivakumar

Graduate Theses and Dissertations

Protein-protein interactions are vital in maintaining proper function and homeostasis in cells. Some signaling pathways are regulated by G-proteins that work like switches to activate and deactivate pathways. Mutations in these proteins, their effectors or the interaction between proteins may cause dysregulation of signals that can lead to many diseases.

Rheb, Ras homology enriched in brain, is a Ras family GTPase that is vital in regulation of the mTOR (mammalian target of rapamycin) pathway that signals cell proliferation and growth. Due to the low intrinsic GTPase activity of Rheb, a GTPase activating protein (GAP), Tuberous Sclerosis Complex 2 (TSC2) down …


The Rational Design, Synthesis, Characterization, And Biological Evaluation Of Cancer-Targeting Immunostimulatory Peptide-Protein Conjugates And Tripeptides, Keith Smith Aug 2018

The Rational Design, Synthesis, Characterization, And Biological Evaluation Of Cancer-Targeting Immunostimulatory Peptide-Protein Conjugates And Tripeptides, Keith Smith

Seton Hall University Dissertations and Theses (ETDs)

With the advent of cancer immunotherapy and the rise in applications of synthetic biologics, there has been a steady decline in the incidence of cancer. Despite this trend, there is an anticipated 1.7 million new cancer cases with an estimated 610,000 deaths expected by the end of 2018.2 Therefore, the call for continued efforts in creating more effective treatment options are still in high demand. In this thesis, the rational design of a semi-synthetic cancer-targeting immunostimulatory peptide-protein bioconjugate—using N-succinimidyl carbamate chemistry is described. This bio-orthogonal chemistry approach was used to conjugate the synthetic Pep42, cancer-targeting peptide (CTP) and the immunostimulatory …


Fluorescently Labeled Sirnas And Their Theranostic Applications In Cancer Gene Therapy, Stephen David Kozuch Aug 2018

Fluorescently Labeled Sirnas And Their Theranostic Applications In Cancer Gene Therapy, Stephen David Kozuch

Seton Hall University Dissertations and Theses (ETDs)

Gene therapy has emerged as a promising precision nano-medicine strategy in the treatment of numerous diseases including cancer. At the forefront of its utility are the applications of short-interfering RNA (siRNA), that silence oncogenic mRNA expression leading to cancer cell death through the RNA interference (RNAi) pathway. Despite the therapeutic potential, siRNAs are limited by poor pharmacological properties, which has hindered their translation into the clinic. Recent studies, however, have highlighted the applications of modified siRNAs, including the use of fluorescent probes and siRNA nanostructures in cancer detection and treatment. The siRNAs reported in this thesis are designed to target …


Egfr Signaling From The Early Endosome., Julie A. Gosney Aug 2018

Egfr Signaling From The Early Endosome., Julie A. Gosney

Electronic Theses and Dissertations

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is an integral component of proliferative signaling. When activated by a ligand at the plasma membrane, EGFR dimerizes with another ErbB family receptor, leading to kinase domain activation and transphosphorylation of C-terminus tyrosine residues. These phosphotyrosines act as crucial regulators of EGFR signaling as effector proteins dock to the receptor at these sites. The receptor undergoes clathrin-mediated endocytosis into early endosomes, where it can then be trafficked to a lysosome for degradation. However, the kinase domain of EGFR retains its activity during trafficking, suggesting that EGFR can continue …


Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle Aug 2018

Deciphering The Role Of Human Arylamine N-Acetyltransferase 1 (Nat1) In Breast Cancer Cell Metabolism Using A Systems Biology Approach., Samantha Marie Carlisle

Electronic Theses and Dissertations

Background: Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can additionally hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. NAT1 expression varies inter-individually and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. Additionally, multiple studies have shown the knockdown of NAT1, by both small molecule inhibition and siRNA methods, in breast cancer cells leads to decreased invasive ability and proliferation and decreased anchorage-independent colony formation. However, the exact mechanism by which NAT1 expression affects cancer risk and progression remains unclear. Additionally, consequences …


Characterization Of She1 Spindle Role Using Ceullular, Biochemical, And Biophysical Methods, Yili Zhu Jul 2018

Characterization Of She1 Spindle Role Using Ceullular, Biochemical, And Biophysical Methods, Yili Zhu

Doctoral Dissertations

During development, metaphase spindles undergo large movement and/or rotation to determine the cell division axis. While it has been shown that spindle translocation is achieved by astral microtubules pulling and/or pushing the cortex, how metaphase spindle stability is maintained during translocation remains not fully understood. In budding yeast, our lab has previously proposed a model for spindle orientation wherein the mitotic spindle protein She1 promotes spindle translocation across the bud neck by polarizing cortical dynein pulling activity on the astral microtubules. Intriguingly, She1 exhibits dominant spindle localization throughout the cell cycle. However, whether She1 has any additional role on the …


Extrinsic And Intrinsic Factors In Liver Development, Amrita Palaria Jul 2018

Extrinsic And Intrinsic Factors In Liver Development, Amrita Palaria

Doctoral Dissertations

Liver is the largest internal organ of the human body. It performs a multitude of functions. Therefore, it is provided with a huge regenerative capacity however, because of the same reason it is also prone to various diseases. Hence, it is essential to understand liver development in order to understand liver regeneration and liver diseases to provide better therapeutic targets and solutions. Liver development is orchestrated by a variety of intrinsic and extrinsic factors. The major focus of this dissertation thesis is to elucidate the role of BMP signals and YY1/VEGFA regulated signals in liver development. Liver organogenesis initiates with …


Examining Shsp-Substrate Capture And Chaperone Network Coordination Through Cross-Linking, Keith Ballard Jul 2018

Examining Shsp-Substrate Capture And Chaperone Network Coordination Through Cross-Linking, Keith Ballard

Doctoral Dissertations

Small heat shock proteins (sHSPs) and related α-crystallins are virtually ubiquitous, ATP-independent molecular chaperones linked to protein misfolding diseases. They comprise a conserved core α-crystallin domain (ACD) flanked by an evolutionarily variable N-terminal domain (NTD) and semi-conserved C-terminal extension/domain (CTD). They are capable of binding up to an equal mass of unfolding protein, forming large, heterogeneous sHSP-substrate complexes that coordinate with ATP-dependent chaperones for refolding. To derive common features of sHSP-substrate recognition, I compared the chaperone activity and specific sHSP-substrate interaction sites for three different sHSPs from Arabidopsis (At17.6B), pea (Ps18.1) and wheat (Ta16.9), for which the atomic solution-state structures …


Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri Jul 2018

Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri

Dissertations & Theses (Open Access)

A limited pool of proteins attains vast functional repertoire due to posttranslational modifications (PTMs). Arginine methylation is a common posttranslational modification, which is catalyzed by a family of nine protein arginine methyltransferases or PRMTs. These enzymes deposit one or two methyl groups to the nitrogen atoms of arginine side-chains. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the …


Dynamics And Interactions Of Membrane Proteins, Azamat Galiakhmetov Jul 2018

Dynamics And Interactions Of Membrane Proteins, Azamat Galiakhmetov

Dissertations (1934 -)

Membrane proteins are members of the class of proteins that perform their functions while being associated with a lipid bilayer. In the cell, they serve as transporters, receptors, anchors and enzymes. The domain organisation of these proteins suggests importance of lipid membrane and protein-lipid interactions for protein function. The requirement of a membrane mimic and the level of its resemblance to a native one for protein investigation makes the studies of membrane proteins a challenging project. My research work is focusing on the biophysical and biochemical studies of membrane proteins. This dissertation outlines two separate projects, each with their own …


Strategies For The Modulation Of Protease Activated Receptors (Pars), Disha M. Gandhi Jul 2018

Strategies For The Modulation Of Protease Activated Receptors (Pars), Disha M. Gandhi

Dissertations (1934 -)

Protease-activated receptors (PARs) are class A G protein-coupled receptors (GPCRs) with 4 subtypes (PAR 1 – 4) and with a unique mode of action. PARs are cleaved by extracellular proteases at the N-terminus, creating a new tethered ligand that activates the receptor and transduces biological signals into the cell. PARs have been implicated in various productive and pathological signals, including those related to thrombosis, inflammation, reperfusion injury, and cancer cell metastasis. Despite the fact that PARs are attractive as drug targets, their intramolecular mode of activation makes it challenging to modulate them with drugs in a selective manner, and only …


Identification Of A Tola Protein Binding Site For Bacterial Toxins, Monica Ferrante May 2018

Identification Of A Tola Protein Binding Site For Bacterial Toxins, Monica Ferrante

Honors Projects

Group A colicins are proteinaceous bacteriocins encoded by plasmids that exploit the cellular envelope protein TolA to translocate the cell wall barrier and cellular envelope of the bacterium Escherichia coli. These colicins offer protocols for studying certain protein-protein interactions involved in such membrane transport functions. Previous experimentations suggest the carboxyl-terminal domain of TolA protein contains specific amino acid binding regions required for the translocation of group A colicins into E. coli. The amino acid sequence of this domain varies between E. coli and other gram-negative bacterial species. It has been suggested that this diversity could be utilized to …


The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest May 2018

The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest

Theses & Dissertations

MUC1 is overexpressed in over 90% of pancreatic cancer cases, and its interaction with beta-catenin promotes progression of the disease. Various in vitro and in vivo methods show that beta-catenin and MUC1 interact by way of the cytoplasmic tail of MUC1 (MUC1.CT). This interaction occurs in the membrane of pancreatic cancer cells but is found to a smaller extent in the nucleus as well. Biophysical methods suggest that MUC1 interacts with beta-catenin through a sequence of amino acids in the tail of MUC1 that sit very near the transmembrane domain of MUC1. In pancreatic ductal adenocarcinoma cells, it appears that …


Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam May 2018

Investigation For Novel Anti-Apoptotic Factors In The Neurons Of Drosophila Melanogaster, Haylie Rachel Lam

Chancellor’s Honors Program Projects

No abstract provided.


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Roles Of Phospholipases And Ribosomal S6 Kinase In Lipid Remodeling And Growth In Arabidopsis Response To Phosphate Deprivation, Yuan Su Apr 2018

Roles Of Phospholipases And Ribosomal S6 Kinase In Lipid Remodeling And Growth In Arabidopsis Response To Phosphate Deprivation, Yuan Su

Dissertations

Phosphate (Pi) is one of three macronutrients for plants, which is vital for plant growth and development. Understanding the mechanism by which plants respond and adapt to Pi deficiency not only unveils functions of genes and pathways involved, but also provides potential tools to manipulate crops to better stand Pi stress in low Pi-containing lands. One of the significant metabolic changes in plants under Pi starvation is the membrane lipid remodeling that converts Pi-containing lipids such as phospholipids to Pi-free lipids, such as glycolipids. To elucidate the metabolism and regulation of lipid remodeling, this dissertation characterizes the role of two …


Clpxp Functions In Caulobacter As A Universal And Species-Specific Protease, Robert Vass Mar 2018

Clpxp Functions In Caulobacter As A Universal And Species-Specific Protease, Robert Vass

Doctoral Dissertations

Proteolysis shapes many aspects of cellular survival, including protein quality control and cellular signaling. Powered proteolysis couples ATP hydrolysis with a degradation force that actively probes and interrogates the protein population. ClpXP, exemplifies a conserved two-part protease system charged with powered proteolysis. This protease exists as a regulatory element (ClpX), and a compartmentalized, self-contained peptidase element (ClpP). In Caulobacter crescentus, ClpXP degradation plays a crucial role maintaining proteins that exhibit proper activity, and also triggers the start of cellular differentiation. Substrate elimination requires shared aspects of the protease from both quality control and precision protein destruction functions. Here, the regulatory …


Mechanisms For Survival And Drug Resistance In Cancer Cells, Matthew B. Utter Feb 2018

Mechanisms For Survival And Drug Resistance In Cancer Cells, Matthew B. Utter

Dissertations, Theses, and Capstone Projects

PART I

Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking the hormone androgen from activating the androgen receptor (AR) and thus inhibit growth and proliferation of the cancer. Androgen deprivation therapy (ADT) can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study, we provide evidence that androgen-insensitive prostate cancer cells have elevated phospholipase D (PLD) activity relative to the androgen-sensitive prostate cancer cells. PLD …


Characterizing The Role Of Thymine Dna Glycosylase In Transcriptional Regulation And Cancer In Vivo, Mohammad Haider Hassan Jan 2018

Characterizing The Role Of Thymine Dna Glycosylase In Transcriptional Regulation And Cancer In Vivo, Mohammad Haider Hassan

Electronic Thesis and Dissertation Repository

Cytosine methylation (5mC) is essential for transcriptional control and genomic stability and is often used as a prognostic marker in cancer. Although 5mC has long been considered a relatively stable epigenetic mark, recent studies have demonstrated that it can be reversed enzymatically by TET proteins which oxidize 5mC into 5-hydroxymethylcytosine (5-hmC), and then to 5-formylcytosine (5-fC) and 5-carboxylcytosine (5caC). This mechanism is known as active DNA demethylation and the base excision repair enzyme Thymine DNA Glycosylase (TDG) plays an essential role in this process by removing 5-fC and 5-caC which are subsequently replaced by the unmethylated cytosine. Importantly, homozygous loss …


Evaluating The Interaction Between The Human Melanocortin-2 Receptor And The Accessory Protein, Mrap1: Chimeric Receptor And Alanine Substitution Studies On Transmembrane Domain 4, Extracellular Loop 2, And Transmembrane Domain 5, Perry Victoria Davis Jan 2018

Evaluating The Interaction Between The Human Melanocortin-2 Receptor And The Accessory Protein, Mrap1: Chimeric Receptor And Alanine Substitution Studies On Transmembrane Domain 4, Extracellular Loop 2, And Transmembrane Domain 5, Perry Victoria Davis

Electronic Theses and Dissertations

The melanocortin-2 receptor (MC2R) is the most complex due to its trafficking and ligand selectivity requirements for proper activation. The MC2R requires the melanocortin receptor accessory protein-1 (MRAP1) for proper trafficking and activation of the receptor by the melanocortin hormone, ACTH. MRAP1 is a single transmembrane-spanning domain protein that creates a homodimer with another MRAP1 protein. Furthermore, MRAP2 creates a heterodimer with the MC2R. Previous studies have shown that the MRAP1 protein contains an activation motif required for activation of MC2R and this activation motif located on the extracellular space side of the plasma membrane of the cell. The objective …


Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi Jan 2018

Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi

Theses and Dissertations--Molecular and Cellular Biochemistry

Upon vascular injury, activated blood platelets fuse their granules to the plasma membrane and release cargo to regulate the vascular microenvironment, a dynamic process central to platelet function in many critical processes including hemostasis, thrombosis, immunity, wound healing, angiogenesis etc. This granule- plasma membrane fusion is mediated by a family of membrane proteins- Soluble N-ethyl maleimide Attachment Receptor Proteins(SNAREs). SNAREs that reside on vesicle (v-SNAREs) /Vesicle-Associated Membrane Proteins(VAMPs) interact with target/t-SNAREs forming a trans-bilayer complex that facilitates granule fusion. Though many components of exocytic machinery are identified, it is still not clear how it could be manipulated to prevent …


Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang Jan 2018

Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang

Theses and Dissertations--Molecular and Cellular Biochemistry

Signaling scaffolds are critical for the correct spatial organization of enzymes within the ERK1/2 signaling pathway and proper transmission of intracellular information. However, mechanisms that control molecular dynamics within scaffolding complexes, as well as biological activities regulated by the specific assemblies, remain unclear.

The scaffold protein Shoc2 is critical for transmission of the ERK1/2 pathway signals. Shoc2 accelerates ERK1/2 signaling by integrating Ras and RAF-1 enzymes into a multi-protein complex. Germ-line mutations in shoc2 cause Noonan-like RASopathy, a disorder with a wide spectrum of developmental deficiencies. However, the physiological role of Shoc2, the nature of ERK1/2 signals transduced through this …