Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry

Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco Jan 2020

Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco

Wayne State University Dissertations

Ubiquitin is an 8.5 kDa post-translational modifier involved in essentially all eukaryotic cellular processes. Through a process called ubiquitination, ubiquitinating enzymes chemically attach ubiquitin to substrate proteins to control their fates, resulting in anything from their recruitment into signaling pathways to their proteasomal degradation, with a plethora of possibilities in between. Ubiquitin molecules can also be attached to one another, resulting in poly-ubiquitin chains with various effects depending on the number of ubiquitin molecules and the specific amino acid residues used to link them together. While most poly-ubiquitin in the cell exists as conjugated species, there are also untethered poly-ubiquitin …


Carbohydrate-Based Inducers Of Cellular Stress For Targeting Cancer Cell Metabolism, Fidelis Ndombera Jan 2018

Carbohydrate-Based Inducers Of Cellular Stress For Targeting Cancer Cell Metabolism, Fidelis Ndombera

Wayne State University Dissertations

ABSTRACT

CARBOHYDRATE-BASED INDUCERS OF CELLULAR STRESS FOR TARGETING CANCER CELL METABOLISM

by

FIDELIS TOLOYI NDOMBERA

May 2018

Advisor: Dr. Young-Hoon Ahn

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

Metabolic reprogramming and redox control of cancer cells is vital for their proliferation, but also provides selective strategies for treating cancer. Increased generation of reactive oxygen species (ROS) and an intricate control of redox status in cancer cells relative to normal cells provide a basis for designing ROS-inducing anticancer agents. In my work, I designed, synthesized and evaluated carbohydrate-based small molecules for ROS-generation, cytotoxicity and redox signaling and stress response. Our data …


Studies Of Sumoylation In Regulating Mif Stability And Rangap1 Nucleo-Cytoplasmic Shuttling In Controlling Its Sumo Modification, Progga Sen Jan 2017

Studies Of Sumoylation In Regulating Mif Stability And Rangap1 Nucleo-Cytoplasmic Shuttling In Controlling Its Sumo Modification, Progga Sen

Wayne State University Dissertations

SUMOylation is an essential post-translational modification that regulates a variety of critical cellular pathways ranging from nuclear transport to protein stability. Accumulating lines of evidence have shown that a perturbation of the SUMOylation pathway is associated with human diseases, especially various types of cancer. Our recent proteomic studies revealed a drastic increase in levels of SUMO2/3 modification on the proinflammatory cytokine MIF in the metastatic breast cancer cell line compared to the non-metastatic control cell line. Interestingly, the increase in levels of both MIF and global SUMO-2/3 modification in the metastatic cells are positively correlated to that of unmodified MIF …


Studies Towards Broadening The Substrate Profile And Regulation Of Histone Deacetylase 1, Dhanusha Ashanthi Nalawansha Jan 2016

Studies Towards Broadening The Substrate Profile And Regulation Of Histone Deacetylase 1, Dhanusha Ashanthi Nalawansha

Wayne State University Dissertations

Aberrant expression of histone deacetylase 1 (HDAC1) is implicated in multiple diseases, including cancer. As a consequence, HDAC1 has emerged as an important therapeutic target for drug development. HDAC1 regulates key cellular processes, such as cell proliferation, apoptosis, and cell survival, by deacetylating both histone and non-histone substrates. Due to the lack of simple tools to identify physiological substrates of HDAC1, the full spectrum of HDAC1 activities in the cell remains unclear. Here, we employed a substrate trapping strategy to identify cellular substrates of HDAC1. Using this approach, we identified mitosis-related protein Eg5 as a substrate. HDAC1 colocalizes with Eg5 …


The Role Of Cad,Flash And Fam129b In Cancer Cell Survial And Apoptosis, Song Chen Jan 2012

The Role Of Cad,Flash And Fam129b In Cancer Cell Survial And Apoptosis, Song Chen

Wayne State University Dissertations

Apoptosis is a normal process in the human body. However, apoptosis is desregulated in cancer cells. Most cancer cells gain resistance to apoptosis, leading to uncontrolled proliferation. In this dissertation, we identified three proteins, associated with apoptosis pathway. 1) CAD, a large multifunctional complex that is invariably elevated in tumor cells, 2) FLASH, a large protein with multiple growth related functions and 3) FAM129B. We demonstrate that CAD could interact with FLASH by using yeast two hybrid, co-immunopreciptation and fluorescence microscopy. In addition, functional analysis using siRNA technology further indicated that CAD could co-operate with FLASH and play roles in …


Cardiac Calsequestrin Phosphorylation And Trafficking In The Mammalian Cardiomyocyte, Timothy Mcfarland Jan 2011

Cardiac Calsequestrin Phosphorylation And Trafficking In The Mammalian Cardiomyocyte, Timothy Mcfarland

Wayne State University Dissertations

Cardiac CSQ (CSQ2) is a multifaceted protein, capable of binding significant quantities of Ca2+ and altering ryanodine receptor activity at the junctional sarcoplasmic reticulum (SR). Little is known about the trafficking of CSQ2 from its unknown site of biosynthesis, which appears to be of importance as its structure changes in a trafficking-dependent manner in various types of heart failure. Through the use of multiple antibodies specific to classic rough ER markers, and with the creation of CSQ-DsRed tetramer fusion protein, we were able to establish a juxtanuclear localization of rough ER in cardiomyocytes. Using fluorescence confocal microscopy, the translocon complex …