Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Biochemistry

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor Sep 2022

Determining The Roles Of The Oligomerization And C-Terminal Domains In Mutant P53 Gain-Of-Function Activities, George K. Annor

Dissertations, Theses, and Capstone Projects

The tumor suppressor p53 (TP53) gene is often mutated in cancer, with missense mutations found in the central DNA binding domain, and less often in the oligomerization domain (OD) and C-terminal domain (CTD). The OD and CTD have been found to be critical for the tumor suppressor functionality of wild-type p53 (wtp53). Specific missense mutations in the DNA binding domain have been found to confer new gain-of-function (GOF) activities. Mutations that destabilize tetramer formation, or deletion of key lysine residues within the CTD, downregulate the ability of wtp53 to transactivate (increase the rate of transcription of) its target …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Development Of Ligand Guided Selection (Ligs) To Identify Specific Dna Aptamers Against Cell Surface Proteins, Hasan Ekrem Zumrut Jun 2020

Development Of Ligand Guided Selection (Ligs) To Identify Specific Dna Aptamers Against Cell Surface Proteins, Hasan Ekrem Zumrut

Dissertations, Theses, and Capstone Projects

Oligonucleotide aptamers (nucleic acid-based affinity reagents) are an emerging class of synthetic molecules that display high affinity and specificity towards their targets. Aptamer molecules for a target of interest are obtained using a combinatorial chemistry-based method termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX is an in vitro selection process in which a random oligonucleotide library is subjected to repeated cycles of target incubation, separation, and amplification until target-specific evolved sequences become prevalent in the library. Typically, SELEX is used against target molecules such as small molecules and proteins, in their purified state. However, aptamers selected against purified …


Through The Back Door: Proteins Escape Cells Without Conventional Permission, Michael J. Cohen Feb 2020

Through The Back Door: Proteins Escape Cells Without Conventional Permission, Michael J. Cohen

Dissertations, Theses, and Capstone Projects

Proteins secreted to the extracellular environment play a fundamental role as signals, in metabolism, and a variety of other processes. The process of secretion through the endoplasmic reticulum and Golgi to the plasma membrane is well documented, and all cargo in this pathway contains a signal peptide. However, a variety of proteins secreted from eukaryotes lack a signal peptide and are called unconventionally secreted proteins. Here we discuss known mechanisms of unconventional protein secretion, as well as model proteins which follow characterized pathways. Additionally, we summarize the roles various unconventionally secreted proteins play outside of cells and suggest criteria for …


Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo Sep 2018

Renal Risk Variants Of Apolipoprotein L-1 Form Channels At The Plasma Membrane That Lead To A Cytotoxic Influx Of Calcium, Joseph A. Giovinazzo

Dissertations, Theses, and Capstone Projects

Apolipoprotein L-1 (APOL1) is a secreted protein that provides protection against several protozoan parasites due to its channel forming properties. Recently evolved variants, G1 and G2, increase kidney disease risk when present in two copies. In mammalian cells, overexpression of G1 and G2, but not wild-type G0, leads to swelling and eventual lysis. However, the mechanism of cell death remains elusive with multiple pathways being invoked, such as autophagic cell death mediated by a BH3 domain in APOL1, which we evaluated in this study. We hypothesized that the common trigger for these pathways is the APOL1 cation channel, which is …


Phospholipase D-Dependent Mtorc1 Activation By Glutamine, Elyssa Bernfeld Sep 2018

Phospholipase D-Dependent Mtorc1 Activation By Glutamine, Elyssa Bernfeld

Dissertations, Theses, and Capstone Projects

Glutamine, the conditionally essential amino acid and most abundant amino acid in human sera, is a key nutrient required for sustaining cell proliferation. Glutamine is essential for nucleotide, protein, and lipid synthesis, all of which are essential for cell proliferation. The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex that acts as a sensor of nutrients, relaying signals for the shift from catabolic to anabolic metabolism. While glutamine plays an important role in activating mTORC1, the mechanism is not completely clear. Here we describe a Rag-independent mechanism of mTORC1 activation by glutamine that is dependent …


Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek May 2018

Regulation Of The Tubulin Homolog Ftsz In Escherichia Coli, Monika S. Buczek

Dissertations, Theses, and Capstone Projects

Escherichia coli is a well-known pathogen, and importantly, a widely used model organism in all fields of biological sciences for cloning, protein purification, and as a model for Gram-negative bacterial species. And yet, researchers do not fully understand how this bacterium replicates and divides. Every year additional division proteins are discovered, which adds complexity to how we understand E. coli undergoes cell division. Due to their specific roles in cytokinesis, some of these proteins may be potential targets for development of antibacterials or bacteriostatics, which are much needed for fighting the current global antibacterial deficit. My thesis work focuses on …


Mechanisms For Survival And Drug Resistance In Cancer Cells, Matthew B. Utter Feb 2018

Mechanisms For Survival And Drug Resistance In Cancer Cells, Matthew B. Utter

Dissertations, Theses, and Capstone Projects

PART I

Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking the hormone androgen from activating the androgen receptor (AR) and thus inhibit growth and proliferation of the cancer. Androgen deprivation therapy (ADT) can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study, we provide evidence that androgen-insensitive prostate cancer cells have elevated phospholipase D (PLD) activity relative to the androgen-sensitive prostate cancer cells. PLD …


Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon Feb 2017

Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon

Dissertations, Theses, and Capstone Projects

Mammalian target of Rapamycin (mTOR) is a protein kinase that integrates nutrient and growth factor signals to promote cellular growth and proliferation. mTOR exists in two complexes - mTORC1 and mTORC2 that are distinguished by their binding partners and signaling inputs. mTORC1 is responsive to growth factors, amino acids and glucose and is associated with Raptor; whereas, mTORC2 is responsive primarily to growth factors and is associated with Rictor. Raptor and Rictor confer substrate specificity to mTORC1 and mTORC2 respectively. Phosphatidic acid (PA), a lipid second messenger and a central metabolite for membrane phospholipid biosynthesis, is required for the stability …


Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang Sep 2016

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang

Dissertations, Theses, and Capstone Projects

An essential first step in bacterial division is the assembly of a cytokinetic ring (Z-ring) formed by the tubulin-like FtsZ at midcell. The highly conserved core domain of FtsZ has been reported to mediate assembly of FtsZ polymers in vivo and in vitro. Species-specific differences in the FtsZ C-terminal domain such as the FtsZ CTV region and interactions with several modulatory proteins such as ZapC and ZapD, restricted to certain bacterial classes, also serve as key determinants of FtsZ protofilament bundling. Here, we characterize (i) the roles of the FtsZ CTV region in mediating both longitudinal and lateral interactions …


Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena Feb 2014

Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena

Dissertations, Theses, and Capstone Projects

Growth factors (GFs) as well as nutrient sufficiency regulate cell division in metazoans. The vast majority of mutations that contribute to cancer are in genes that regulate progression through the G1 phase of the cell cycle. A key regulatory site in G1 is the growth factor-dependent Restriction Point (R), where cells get permissive signals to divide. In the absence of GF instructions, cells enter the quiescent G0 state. Despite fundamental differences between GF signaling and nutrient sensing, they both have been confusingly referred to as R and therefore by definition considered to be a singular event in G1. Autonomy from …


Lipid Dependence In Ras-Driven Tumors, Darin Salloum Feb 2014

Lipid Dependence In Ras-Driven Tumors, Darin Salloum

Dissertations, Theses, and Capstone Projects

Over past decade, metabolic alterations in cancer cells have received a substantial amount of interest. It had been established that cancer cells undergo a significant amount of metabolic alterations, and some of these alterations are similar to those in normal highly proliferative cells. However, it is becoming more apparent that many of the metabolic alterations are specific to particular oncogenic signaling pathways. Although altered metabolic machinery makes cancer cells more efficient at promoting growth when nutrients are supplied at the sufficient amounts, the dependency of cancer cells on particular metabolic reprogramming deems cancer cells susceptible to disruptions within metabolic network. …


Identification And Characterization Of Protein Phopshatases Regulating The Sma/Mab Pathway In C. Elegans, Sheng Xiong Feb 2014

Identification And Characterization Of Protein Phopshatases Regulating The Sma/Mab Pathway In C. Elegans, Sheng Xiong

Dissertations, Theses, and Capstone Projects

TGF-beta signaling is a conserved signaling pathway among eukaryotes, which controls various normal cellular responses from cell proliferation to cell death. The mutations in its components are found in developmental disorders and cancer. Therefore, this signaling pathway is extensively investigated so that new therapeutic targets could be discovered and novel drugs could be developed. Previous studies suggested the involvement of phosphatases in regulation of TGF-beta signaling, but these studies were performed in cell culture rather than intact organisms. C. elegans is a tractable organism in which to study signaling in vivo. In C. elegans, growth is controled by a conserved …