Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry

An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson Jan 2022

An Investigation Into The Mechanism Of Proteasome Dysfunction In Neurodegenerative Disease And The Biological Impact Of Proteasome Hyperactivation In C. Elegans, Raymond T. Anderson

Graduate Theses, Dissertations, and Problem Reports

Aging is an inevitable process that occurs as humans grow older. It is characterized by the chronological accumulation of cellular damage over time leading to functional decline as an organism grows older. Several processes are thought to contribute to the aging phenomenon, but one of the most prolific of these is the disruption of protein homeostasis (proteostasis). The collapse of proteostasis can lead to accelerated aging and the development of age-related diseases including devastating neurodegenerative diseases (NDs) like Alzheimer and Parkinson disease. Virtually all NDs are characterized by the buildup of proteins in and around neurons resulting in neuronal death …


Ero1Α Promotes Tumorigenesis In Egfr Driven Nsclc, Brennan D. Johnson Jan 2022

Ero1Α Promotes Tumorigenesis In Egfr Driven Nsclc, Brennan D. Johnson

Graduate Theses, Dissertations, and Problem Reports

Non-Small Cell Lung Cancer (NSCLC) is a pulmonary malignancy most commonly associated with smoking, or exposure to asbestos or Radon. Approximately, 1.6 Million deaths occur each year due to lung cancer. Lung Cancer is categorized by two main types, Small Cell Lung Cancer (SCLC) and NSCLC. NSCLC accounts for approximately 85% of all lung cancer cases and is subdivided into three sub-categories: Adenocarcinoma, the most common and leading cause of death in the United States; Squamous Cell Carcinoma (SCC), and Large Cell Carcinoma. Though NSCLC treatment regimens have shown increasing clinical benefit over the last two decades with targeted therapies. …


From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest Jan 2021

From Inner Segment To Outer Segment: Palmitoylation Of Photoreceptor Na+, K+-Atpase And The Importance Of Prcd In Photoreceptor Outer Segment Morphogenesis, Emily R. Sechrest

Graduate Theses, Dissertations, and Problem Reports

Photoreceptors are specialized neuroepithelial cells which are optimized for efficient capture of light and initiation of visual transduction. These cells have several compartments which are very important for proper visual function and segregation of cellular processes, including the outer segment (OS), inner segment (IS), nucleus, and synapse. The IS houses all of the cellular organelles and biosynthetic molecular machinery the cell requires and is the site of protein synthesis. The light-sensing OS is a highly modified, primary cilium, which contains many stacks of double membranous discs which house proteins required for formation and maintenance of OS structure, as well as …


Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan Jan 2020

Role Of Ciliary Proteins Adp Ribosylation Factor Like Gtpase 13b (Arl13b) And Bardet-Biedl Syndrome-8 (Bbs8) In Photoreceptor Outer Segment Morphogenesis, Maintenance, And Viability, Tanya L. Dilan

Graduate Theses, Dissertations, and Problem Reports

Photoreceptor neurons are modified primary cilia with an extended ciliary compartment known as the outer segment (OS). The mechanisms behind the elaboration of photoreceptor cilia, OS morphogenesis, and maintenance remain poorly understood. In this work, we focused on dissecting the role of two ciliary proteins, the small GTPase ADP-ribosylation factor-like GTPase 13B (ARL13B) and Bardet-Biedl Syndrome-8 (BBS8) in the context of photoreceptor biology. Both BBS8 and ARL13B are linked to defects in ciliogenesis (cilia development) and Retinitis Pigmentosa (vision loss). ARL13B is implicated in regulating ciliary length, and BBS8 is part of the Bardet-Biedl Syndrome complex (BBSome); the BBSome is …


The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd Jan 2020

The Exploration Of Nanotoxicological Copper And Interspecific Saccharomyces Hybrids, Matthew Joseph Winans Phd

Graduate Theses, Dissertations, and Problem Reports

Nanotechnology takes advantage of cellular biology’s natural nanoscale operations by interacting with biomolecules differently than soluble or bulk materials, often altering normal cellular processes such as metabolism or growth. To gain a better understanding of how copper nanoparticles hybridized on cellulose fibers called carboxymethyl cellulose (CMC) affected growth of Saccharomyces cerevisiae, the mechanisms of toxicity were explored. Multiple methodologies covering genetics, proteomics, metallomics, and metabolomics were used during this investigation. The work that lead to this dissertation discovered that these cellulosic copper nanoparticles had a unique toxicity compared to copper. Further investigation suggested a possible ionic or molecular mimicry …


Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer Jan 2018

Spontaneous Dna Damage To The Nuclear Genome Promotes Senescence, T Redox Imbalance And Aging, Andria R. Robinson, Matthew J. Yousefzadeh, Tania A. Rozgaja, Jin Wang, Xuesen Li, Jeremy S. Tilstra, Chelsea H. Feldman, Siobhan Q. Gregg, Caroline H. Johnson, Erin M. Skoda, Marie-Celine Frantz, Harris Bell-Temin, Hannah Pope-Varsalona, Aditi U. Gurkar, Luigi A. Nasto, Rena A.S. Robinson, Heike Fuhrmann-Stroissnigg, Jolanta Czerwinska, Sara J. Mcgowan, Nadiezhda Cantu-Madellin, Jamie B. Harris, Salony Maniar, Mark A. Ross, Christy E. Trussoni, Nicholas F. Larusso, Eugenia Cifuentes-Pagano, Patrick J. Pagano, Barbara Tudek, Nam V. Vo, Lora H. Rigatti, Patricia L. Opresko, Donna B. Stolz, Simon C. Watkins, Christin E. Burd, Claudette M. St, Croix, Gary Siuzdak, Nathan A. Yates, Paul D. Robbins, Yinsheng Wang, Peter Wipf, Eric E. Kelley, Laura J. Neidernhofer

Faculty & Staff Scholarship

Accumulation of senescent cells over time contributes to aging and age-related diseases. However, what drives senescence in vivo is not clear. Here we used a genetic approach to determine if spontaneous nuclear DNA damage is sufficient to initiate senescence in mammals. Ercc1-/Δ mice with reduced expression of ERCC1-XPF endonuclease have impaired capacity to repair the nuclear genome. Ercc1-/Δ mice accumulated spontaneous, oxidative DNA damage more rapidly than wild-type (WT) mice. As a consequence, senescent cells accumulated more rapidly in Ercc1-/Δ mice compared to repair-competent animals. However, the levels of DNA damage and senescent cells in Ercc1-/Δ mice never exceeded that …