Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Biochemistry

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey Jan 2023

Development And Biological Evaluation Of Selective Small-Molecule Inhibitors Of The Human Cytochrome P450 1b1, Austin Hachey

Theses and Dissertations--Chemistry

The human cytochrome P450 1B1 (CYP1B1) is an emerging target for small- molecule therapeutics. Several solid tumors overexpress CYP1B1 to the degree that it has been referred to as a universal tumor antigen. Conversely, its expression is low in healthy tissues. CYP1B1 may drive tumorigenesis through promoting the formation of reactive toxins from environmental pollutants or from endogenous hormone substrates. Additionally, the expression of CYP1B1 in tumors is associated with resistance to several common chemotherapies and with poor prognoses in cancer patients. However, inhibiting CYP1B1 with small molecules has been demonstrated in cellular and murine model systems to reverse this …


A Multidisciplinary Characterization Of The Enzymology And Biology Of Reversible Glucan Phosphorylation In Toxoplasma Gondii , Robert Murphy Jan 2022

A Multidisciplinary Characterization Of The Enzymology And Biology Of Reversible Glucan Phosphorylation In Toxoplasma Gondii , Robert Murphy

Theses and Dissertations--Molecular and Cellular Biochemistry

Toxoplasma gondii is an opportunistic, protozoan parasite of all warm-blooded animals, infecting roughly one-third of humans worldwide. Humans acquire infections by consuming T. gondii tissue cysts in undercooked meat or from oocysts shed in cat feces. Encysted parasites convert into rapidly growing tachyzoites that disseminate throughout the body, defining the acute phase of infection. Under host immune pressure, tachyzoites convert into bradyzoites that populate tissue cysts found in CNS or muscle tissue and persist for the lifetime of the host, defining the chronic phase of infection. Tissue cysts are responsible for transmission via carnivory, but also possess the ability to …


Toward The Discovery Of Biological Functions Associated With The Mechanosensor Mtl1p Of Saccharomyces Cerevisiae Via Integrative Multi-Omics Analysis, Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, José R. Rodríguez-Medina Apr 2021

Toward The Discovery Of Biological Functions Associated With The Mechanosensor Mtl1p Of Saccharomyces Cerevisiae Via Integrative Multi-Omics Analysis, Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, José R. Rodríguez-Medina

Biology Faculty Publications

Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase subunit of trehalose 6-phosphate synthase which suggests that mtl1Δ strains undergo intrinsic activation of a non-lethal heat stress response. Furthermore, quantitative global proteomic analysis conducted on TMT-labeled proteins combined with metabolome analysis revealed that mtl1Δ strains exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased …


Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee Jan 2021

Reversible Glucan Phosphorylation In The Red Alga, Cyanidioschyzon Merolae, Corey Owen Brizzee

Theses and Dissertations--Molecular and Cellular Biochemistry

Starch and glycogen are an essential component for the majority of species and have been developed to maintain homeostasis in response to environmental changes. Water-soluble glycogen is an excellent source of quick, short-term energy in response to energy demands. In contrast, plants and algae have developed the macromolecule starch that is elegantly suitable for their dependence on external circumstances. Semi-crystalline starch is water-insoluble and inaccessible to most amylolytic enzymes, thus plants and algae have developed a coordinated system so that these enzymes can gain access to the denser starch energy cache. Starch-like semi-crystalline polysaccharides are also found in red algae, …


Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs Jan 2021

Entry And Replication Of Negative-Strand Rna Viruses, Kerri Boggs

Theses and Dissertations--Molecular and Cellular Biochemistry

Hendra virus (HeV) and human metapneumovirus (HMPV) are negative-sense, singled-stranded RNA viruses. The paramyxovirus HeV is classified as a biosafety level 4 pathogen due to its high fatality rate and the lack of a human vaccine or antiviral treatment. HMPV is a widespread pneumovirus that causes respiratory tract infections which are particularly dangerous for young children, immunocompromised individuals, and the elderly. Like HeV, no vaccines or therapies are available to combat HMPV infections. These viruses fuse their lipid envelopes with a cell to initiate infection. Blocking cell entry is a promising approach for antiviral development, and many vaccines are designed …


Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha Jan 2021

Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha

Theses and Dissertations--Chemistry

The Resistant Nodulation Division (RND) super family member, tripartite AcrA-AcrB-TolC efflux pump, is a major contributor in conferring multidrug-resistance in Escherichia coli. The structure of the pump complex, and drug translocation by functional rotation mechanism have been widely studied. Despite of all these data, the dynamics of the assembly process of the pump and AcrB during functional rotation in the process of drug efflux remains poorly understood. My thesis focuses on understanding the pump assembly process, dynamics of AcrB in functional rotation mechanism, and also investigate the mechanism of degradation of AcrB facilitated by a C-terminal ssrA tag.

In the …


Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens Jan 2021

Developing Synthetic Strategies For Multifaceted Applications Of Stable Gold-Based Complexes, Randall Tyler Mertens

Theses and Dissertations--Chemistry

Development of stable gold-based complexes has been a rapidly advancing field due to the popularity of gold complexes, particularly for use in biomedical research and catalytic transformations. Given that auranofin, a gold(I) complex with FDA approval for the treatment of rheumatoid arthritis is used in the clinic, the development of stable gold-based molecules of clinical relevance is urgently needed. Herein are reported, synthetic strategies used for the development of new classes of gold(I) and gold(III) complexes for advancement in mitochondrial modulation for use as chemotherapeutics as well as application to gold catalysis due to the unique geometry of complexes presented …


The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou Jan 2019

The Functional Role Of Rna Binding Protein Rbms3 As A Tumor Promoter In Triple-Negative Breast Cancer Cells, Yuting Zhou

Theses and Dissertations--Molecular and Cellular Biochemistry

RBMS3 belongs to the family of c-myc gene single-strand binding proteins (MSSPs) that play important roles in transcriptional regulation. Here, we show that RBMS3 functions as a tumor promoter in triple-negative breast cancer (TNBC), a highly aggressive BC subtype. Analysis of RBMS3 expression shows that RBMS3 is upregulated at both mRNA and protein levels in TNBC cells. Functionally, overexpression of RBMS3 increases cell migration, invasion and cancer stem cell (CSC) behaviors. Moreover, RBMS3 induces expression of epithelial-mesenchymal transition (EMT) and CSC markers. Conversely, loss of RBMS3 in TNBC BT549 cells inhibits cell proliferation, migration and mesenchymal phenotype. Correlation analysis shows …


Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan Jan 2019

Mechanisms Of Trinucleotide Repeat Instability During Dna Synthesis, Kara Y. Chan

Theses and Dissertations--Toxicology and Cancer Biology

Genomic instability, in the form of gene mutations, insertions/deletions, and gene amplifications, is one of the hallmarks in many types of cancers and other inheritable genetic disorders. Trinucleotide repeat (TNR) disorders, such as Huntington’s disease (HD) and Myotonic dystrophy (DM) can be inherited and repeats may be extended through subsequent generations. However, it is not clear how the CAG repeats expand through generations in HD. Two possible repeat expansion mechanisms include: 1) polymerase mediated repeat extension; 2) persistent TNR hairpin structure formation persisting in the genome resulting in expansion after subsequent cell division. Recent in vitro studies suggested that a …


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the …


Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei Dec 2018

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei

Chemistry Faculty Publications

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background …


Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi Jan 2018

Controlling Platelet Secretion To Modulate Hemostasis And Thrombosis, Smita Joshi

Theses and Dissertations--Molecular and Cellular Biochemistry

Upon vascular injury, activated blood platelets fuse their granules to the plasma membrane and release cargo to regulate the vascular microenvironment, a dynamic process central to platelet function in many critical processes including hemostasis, thrombosis, immunity, wound healing, angiogenesis etc. This granule- plasma membrane fusion is mediated by a family of membrane proteins- Soluble N-ethyl maleimide Attachment Receptor Proteins(SNAREs). SNAREs that reside on vesicle (v-SNAREs) /Vesicle-Associated Membrane Proteins(VAMPs) interact with target/t-SNAREs forming a trans-bilayer complex that facilitates granule fusion. Though many components of exocytic machinery are identified, it is still not clear how it could be manipulated to prevent …


Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang Jan 2018

Functional Characterization Of Scaffold Protein Shoc2, Hyein Jang

Theses and Dissertations--Molecular and Cellular Biochemistry

Signaling scaffolds are critical for the correct spatial organization of enzymes within the ERK1/2 signaling pathway and proper transmission of intracellular information. However, mechanisms that control molecular dynamics within scaffolding complexes, as well as biological activities regulated by the specific assemblies, remain unclear.

The scaffold protein Shoc2 is critical for transmission of the ERK1/2 pathway signals. Shoc2 accelerates ERK1/2 signaling by integrating Ras and RAF-1 enzymes into a multi-protein complex. Germ-line mutations in shoc2 cause Noonan-like RASopathy, a disorder with a wide spectrum of developmental deficiencies. However, the physiological role of Shoc2, the nature of ERK1/2 signals transduced through this …


Targeting The Cellular Redox Environment: A Novel Approach For The Treatment Of Hematopoietic Neoplasms, Dustin W. Carroll Jan 2018

Targeting The Cellular Redox Environment: A Novel Approach For The Treatment Of Hematopoietic Neoplasms, Dustin W. Carroll

Theses and Dissertations--Toxicology and Cancer Biology

Hematopoietic stem cells (HSCs) that function to maintain the hematopoietic compartment through self-renewal and differentiation capacities, as well as their downstream progeny, are susceptible to transformation resulting in the generation of the leukemic stem cell (LSC). Chief in the factors that control HSC regulation and protection of the HSC compartment is the cellular redox environment. Deregulation of the Hematopoietic Stem/Progenitor Cell (HSPC) redox environment results in loss of HSPC function and exhaustion. The characteristic developments of HSPC exhaustion via exposure to redox stress closely mirror phenotypic traits of hematopoietic malignancies, presenting the HSPC/LSC redox environment as a potential therapeutic target. …


Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan Jun 2017

Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


Elucidating Proteasome Catalytic Subunit Composition And Its Role In Proteasome Inhibitor Resistance, Kimberly C. Carmony Jan 2016

Elucidating Proteasome Catalytic Subunit Composition And Its Role In Proteasome Inhibitor Resistance, Kimberly C. Carmony

Theses and Dissertations--Pharmacy

Proteasome inhibitors bortezomib and carfilzomib are FDA-approved anticancer agents that have contributed to significant improvements in treatment outcomes. However, the eventual onset of acquired resistance continues to limit their clinical utility, yet a clear consensus regarding the underlying mechanisms has not been reached.

Bortezomib and carfilzomib are known to target both the constitutive proteasome and the immunoproteasome, two conventional proteasome subtypes comprising distinctive sets of catalytic subunits. While it has become increasingly evident that additional, ‘intermediate’ proteasome subtypes, which harbor non-standard mixtures of constitutive proteasome and immunoproteasome catalytic subunits, represent a considerable proportion of the proteasome population in many cell …


Physiological Function Of Fus: An Rna Binding Protein In Motor Neuron Disease, Liuqing Yang Jan 2015

Physiological Function Of Fus: An Rna Binding Protein In Motor Neuron Disease, Liuqing Yang

Theses and Dissertations--Molecular and Cellular Biochemistry

FUS is an RNA binding protein implicated in the motor neuron disease— amyotrophic lateral sclerosis (ALS, also called Lou Gehrig’s disease). ALS is a fatal neurodegenerative disease characterized by progressive motor neuron death. Mutations in the FUS gene cause about 4% of familial ALS (FUS ALS). Mutated FUS protein mislocalizes from the motor neuron nucleus to the cytoplasm and forms inclusions in the cytoplasm. It is unclear how FUS mislocalization induces motor neuron dysfunction and degeneration. This dissertation research was designed to investigate the physiological functions of FUS in the nucleus, with a purpose to shed light on the pathogenesis …


Adp-Ribosylation Factor 6 (Arf6) Regulates Integrin Αiibβ3 Trafficking, Platelet Spreading, And Clot Retraction, Yunjie Huang Jan 2015

Adp-Ribosylation Factor 6 (Arf6) Regulates Integrin Αiibβ3 Trafficking, Platelet Spreading, And Clot Retraction, Yunjie Huang

Theses and Dissertations--Molecular and Cellular Biochemistry

Endocytic trafficking of platelet surface receptors plays a role in the accumulation of granule cargo (i.e. fibrinogen and VEGF) and thus could contribute to hemostasis, angiogenesis, or inflammation. However, the mechanisms of platelet endocytosis are poorly understood. The small GTP-binding protein, ADP-ribosylation factor 6 (Arf6), regulates integrin trafficking in nucleated cells; therefore, we posited that Arf6 functions similarly in platelets. To address this, we generated platelet-specific, Arf6 knockout mice. Arf6-/- platelets had a storage defect for fibrinogen but not other cargo, implying Arf6’s role in integrin αIIbβ3 trafficking. Additionally, platelets from Arf6-/- mice injected with biotinylated-fibrinogen, showed …


Investigating A Conformational Change In The Enzyme Neurolysin, Fei Xiong Nov 2011

Investigating A Conformational Change In The Enzyme Neurolysin, Fei Xiong

Kaleidoscope

No abstract provided.


Investigating Calmodulin-Long Qt Syndrome Restorative Interactions Through Combinatorial Approaches, Michael Bricken Nov 2011

Investigating Calmodulin-Long Qt Syndrome Restorative Interactions Through Combinatorial Approaches, Michael Bricken

Kaleidoscope

No abstract provided.


Loss Of Bloom Syndrome Protein Causes Destabilization Of Genomic Architecture And Is Complemented By Ectopic Expression Of Escherichia Coli Recg In Human Cells, Michael Wayne Killen Jan 2011

Loss Of Bloom Syndrome Protein Causes Destabilization Of Genomic Architecture And Is Complemented By Ectopic Expression Of Escherichia Coli Recg In Human Cells, Michael Wayne Killen

University of Kentucky Doctoral Dissertations

Genomic instability driven by non-allelic homologous recombination (NAHR) provides a realistic mechanism that could account for the numerous chromosomal abnormalities that are hallmarks of cancer. We recently demonstrated that this type of instability could be assayed by analyzing the copy number variation of the human ribosomal RNA gene clusters (rDNA). Further, we found that gene cluster instability (GCI) was present in greater than 50% of the human cancer samples that were tested. Here, data is presented that confirms this phenomenon in the human GAGE gene cluster of those cancer patients. This adds credence to the hypothesis that NAHR could be …