Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Dartmouth College

Series

Mitosis

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic Jan 2012

Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic

Dartmouth Scholarship

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs …


Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor Mar 2003

Minus-End Capture Of Preformed Kinetochore Fibers Contributes To Spindle Morphogenesis, Alexey Khodjakov, Lily Copenagle, Michael B. Gordon, Duane A. Compton, Tarun M. Kapoor

Dartmouth Scholarship

Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient …


Numa Assembles Into An Extensive Filamentous Structure When Expressed In The Cell Cytoplasm, Alejandro Saredi, Louisa Howard, Duane A. Compton Nov 1996

Numa Assembles Into An Extensive Filamentous Structure When Expressed In The Cell Cytoplasm, Alejandro Saredi, Louisa Howard, Duane A. Compton

Dartmouth Scholarship

NuMA is a 236 kDa protein that participates in the organization of the mitotic spindle despite its strict localization in the nucleus during interphase. To test how cells progress through mitosis when NuMA is localized in the cytoplasm instead of the nucleus, we have deleted the nuclear localization sequence of NuMA using site-directed mutagenesis and transiently expressed this mutant protein (NuMA-DeltaNLS) in BHK-21 cells. During interphase, NuMA-DeltaNLS accumulates in the cytoplasm as a large mass approximately the same size as the cell nucleus. When cells enter mitosis, NuMA-DeltaNLS associates normally with the mitotic spindle without causing any apparent deleterious effects …