Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biophysics

2022

Institution
Keyword
Publication
Publication Type

Articles 1 - 27 of 27

Full-Text Articles in Biochemistry

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang Dec 2022

Interactions Of Amyloid Peptides With Lipid Membranes, Yanxing Yang

Dissertations

The aggregation of amyloid proteins into fibrils is a hallmark of several diseases including Alzheimer’s (AD), Parkinson’s, and Type II diabetes. This aggregation process involves the formation of small size oligomers preceding the formation of insoluble fibrils. Recent studies have shown that these oligomers are more likely to be responsible for cell toxicity than fibrils. A possible mechanism of toxicity involves the interaction of oligomers with the cell membrane compromising its integrity. In particular, oligomers may form pore-like structures in the cell membrane affecting its permeability or they may induce lipid loss via a detergent-like effect. This dissertation aims to …


Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez Dec 2022

Quantum Computations And Molecular Dynamics Simulations: From The Fundamentals Of Antimicrobial Resistance To Neurological Diseases, Angel Tamez

Electronic Theses and Dissertations

Biophysical phenomena are modeled using a combination of quantum and classical methods to interpret and supplement three distinct and diverse problems in this dissertation. In the first project, decarboxylation reactions are ubiquitous across chemical and biological disciplines, yet the origin of non-catalytic solvent effects remains elusive. Specific solvent structure and energetics have not been well described for the monoanion of malonate, nor corrected from the gas-phase charge-assisted intramolecular hydrogen bond model known as “pseudochair”. In the aqueous phase, a low-lying energy conformer known as the “orthogonal conformation” is computed to be preferred by a three-water cluster of hydrogen bonding over …


A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd Dec 2022

A Universal Mechanism Of G Protein Inhibition, Tyson Daniel Todd

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce a truly staggering number of diverse extracellular signals including chemical messengers, physical force, and even photons into specific cellular responses through their coupling to heterotrimeric G proteins. G proteins amplify the originating signal through their binding to downstream effectors, activating a complex network of overlapping responses that allow the cell to respond perfectly to that specific stimulus. It is critical to the cell that this process is carried out faithfully in order to respond to the myriad environmental cues and avoid injury, exhaustion, and death for the individual cell or the development of pathology if …


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye Dec 2022

A Novel Transmembrane Ligand Inhibits T Cell Receptor Activation, Yujie Ye

Doctoral Dissertations

T lymphocytes (T cells) play essential roles in the adaptive immune system. Each mature T cell expresses one type of functional T cell receptor (TCR). The TCR recognizes antigens bound to the major histocompatibility complex (MHC) in antigen presenting cells. The resulting stimulation signal crosses the transmembrane domain of TCR and initiates downstream signaling cascades. The human immune system relies on TCRs to recognize a variety of pathogens. Normally, TCR can distinguish the self-antigens from pathogenic antigens. However, dysfunction or aberrant expression of TCRs causes different inflammatory and autoimmune diseases, which afflict millions of people annually (Chapter I). Current treatments …


Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila Nov 2022

Ferrocenium Salt Aided Substitution Reactions And Synthesis Of Glycosylated Curcumin Derivatives, Deva Saroja Talasila

Dissertations

Organic synthesis has been significantly advanced with the employment of transition metal complexes. The discovery of transition metal catalysts provided the synthetic community with powerful tools for accelerating reactions and making them more selective and efficient. Many chemical reactions do not happen without a catalyst.

Iron-based catalysts have several advantages for the chemical industry because it is a non-toxic and ecologically friendly metal. Our group previously found that ferrocenium cations with a 3+ oxidation state of iron-catalyzed propargylic substitution reactions at low temperatures. The sandwich structure of ferrocenes allows substituents to be introduced on the cyclopentadienyl rings, which allows for …


Conformational Dynamics And Aggregation Of Thermally Stressed Proteins Studied By Hydrogen/Deuterium Exchange Mass Spectrometry, Nastaran Nosrat Tajoddin Oct 2022

Conformational Dynamics And Aggregation Of Thermally Stressed Proteins Studied By Hydrogen/Deuterium Exchange Mass Spectrometry, Nastaran Nosrat Tajoddin

Electronic Thesis and Dissertation Repository

Proteins perform various biological functions, e.g., as enzymes or transporters. In addition to naturally occurring proteins, the use of protein therapeutic drugs for treating cancer and other diseases is a rapidly growing area. A thorough biophysical characterization of proteins and protein therapeutics opens the door to a more comprehensive understanding of their role in health and disease. This dissertation aims to expand the capabilities of an existing technique (Hydrogen Deuterium Exchange Mass Spectrometry, HDX-MS), which is widely used for probing protein structure and dynamics. Conventionally, HDX-MS experiments are performed as a function of labelling time. Here we aim to establish …


Investigation Of Kinase Conformational Dynamics And Analytes Detection With Protein Nanopore, Fanjun Li Oct 2022

Investigation Of Kinase Conformational Dynamics And Analytes Detection With Protein Nanopore, Fanjun Li

Doctoral Dissertations

Protein nanopores are pore-forming proteins which have been developed as single-molecule biosensors. Due to the high sensitivity, selectivity, label-free and real-time detection methodology, protein nanopores have been used for a wide variety of applications. In this dissertation, we use ClyA nanopore to investigate kinase conformational dynamics and develop a kinase/nanopore system for the specific detection of kinase allosteric inhibitors. Besides, we engineer OmpG nanopore to be a sensor for nucleic acid detection. Protein kinases play essential roles in cellular regulation by catalyzing the phosphorylation of target proteins and are promising drug targets. The conformational dynamics are critical for kinase functions. …


Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward Sep 2022

Controlling Myosin’S Function Via Interactions Between The Substrate And The Active Site, Mike K. Woodward

Doctoral Dissertations

Molecular motors, such as myosin, have evolved to transduce chemical energy from ATP into mechanical work to drive essential cellular processes, from muscle contraction to vesicular transport. Dysfunction in these motors is a root cause of many pathologies necessitating the application of intrinsic control over molecular motor function. We hypothesized that altering the myosin’s energy substrate via minor positional changes to the triphosphate portion of the molecule will allow us to control the protein and affect its in vitro function. We utilized positional isomers of a synthetic non-nucleoside triphosphate, azobenzene triphosphate, and assessed whether myosin’s force- and motion-generating capacity could …


Improving The Ribozyme Toolbox: From Structure-Function Insights To Synthetic Biology Applications, Jessica Michelle Roberts Aug 2022

Improving The Ribozyme Toolbox: From Structure-Function Insights To Synthetic Biology Applications, Jessica Michelle Roberts

Boise State University Theses and Dissertations

Self-cleaving ribozymes are a naturally occurring class of catalytically active RNA molecules which cleave their own phosphate backbone. In nature, self-cleaving ribozymes are best known for their role in processing concatamers of viral genomes into monomers during viral replication in some RNA viruses, but to a lesser degree have also been implicated in mRNA regulation and processing in bacteria and eukaryotes. In addition to their biological relevance, these RNA enzymes have been harnessed as important biomolecular tools with a variety of applications in fields such as bioengineering. Self-cleaving ribozymes are relatively small and easy to generate in the lab using …


Habitability, And Evolution Of Microorganisms Under Extreme Conditions, Azarin Yazdani Aug 2022

Habitability, And Evolution Of Microorganisms Under Extreme Conditions, Azarin Yazdani

Graduate Theses and Dissertations

The choice of a solvent determines the possible biochemistry of life. Life on Earth is based on carbon biochemistry and has evolved in an environment with water as a solvent. As a polar solvent abundant on Earth, water has unique physical properties, including a large range of liquidity and low viscosity, making it a very good solvent for terrestrial life. Liquids other than water are abundant in the universe, and the chemical nature of these liquids might lead to different chemistries of life. In the first chapter, we review the main characteristics of a good solvent, and then we use …


Amyloid Fibril Formation And Polymorphism : A Critical Role Of Sulfur-Containing Amino Acid Residues, Tatiana Quiñones-Ruiz Aug 2022

Amyloid Fibril Formation And Polymorphism : A Critical Role Of Sulfur-Containing Amino Acid Residues, Tatiana Quiñones-Ruiz

Legacy Theses & Dissertations (2009 - 2024)

Protein aggregation that results in the formation of amyloid fibrils has been linked to many neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. The sulfur atoms in methionine (Met) and cysteine (Cys) residues of proteins can be readily oxidized, significantly affecting their properties. Oxidation of sulfur-containing amino acids has recently been shown to affect protein fibrillation. This work presents novel findings on Cys and Met redox reactions that are related to the formation of amyloid fibrils and on the polymorphism of a model fibrillogenic protein, hen egg white lysozyme (HEWL). Biophysical techniques including Raman spectroscopy, atomic force microscopy, electron paramagnetic …


Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni Jun 2022

Investigating Structures And Functions Of Apoptotic Caspases, Ishankumar V. Soni

Doctoral Dissertations

Caspases are cysteine aspartate proteases involved in various cellular pathways including apoptosis, inflammation, and neurodegeneration. Caspase-9 is classified as an initiator apoptotic caspase that is activated upon intrinsic stress. Caspase-9 is composed of two domains: an N- terminal CARD domain and a catalytic core domain. We have employed hydrogen deuterium exchange mass spectrometry (H/DX-MS) to determine the 1) dynamics of the full-length caspase- 9, 2) dynamic impacts on caspase-9 upon substrate-induced dimerization, and 3) regions involved in the CARD: catalytic core domains interactions. Upon intrinsic stress, caspase-9 activates executioners, procaspase-3 and -7 but not procaspase-6. We have employed site-directed mutagenesis …


Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek May 2022

Investigation Of The Binding Domain Interfaces Of The C-Terminus Of The Albino3 Insertase And The 43kda Chloroplast Signal Recognition Particle Subunit Via Single Molecule Förster Resonance Energy Transfer, Amanda Tomanek

Chemistry & Biochemistry Undergraduate Honors Theses

Fluorescent labeling is a technique used for visualizing functional groups contained in biomolecules by fluorescence imaging. This technique was used in this project to analyze post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCP), which are the core complexes that harvest sunlight to drive photosynthetic electron transfer. This protein is synthesized in the cytosol and post-translationally targeted to the stroma of chloroplasts. CpSRP43 is a signal recognition particle (SRP) subunit unique to chloroplasts, which has been shown to interact with the stroma-soluble C-terminus of the thylakoid-bound Albino3 insertase (Alb3-Cterm). In the chloroplast stroma, targeting to thylakoids is performed via the cpSRP pathway …


Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair May 2022

Modulation Of Kras Structure And Dynamics By Kras Ubiquitination And Membrane Depolarization, Vinay Nair

Dissertations & Theses (Open Access)

KRAS, a 21 kDa small GTPase protein, functions as a molecular switch playing a key role in regulating cell proliferation. Dysregulation of KRAS signaling by oncogenic mutations leads to uncontrolled cell proliferation, a hallmark of cancer cells. Attempts to therapeutically target oncogenic KRAS have led to limited success resulting in a need to identify new mechanisms to targeting KRAS. The interaction of KRAS with its regulators, effectors, and the membrane present one such avenue. In this study, we investigated how post-translational covalent and environmental modifications could modulate these interactions of KRAS. Using computational molecular dynamics simulations, nuclear magnetic resonance spectroscopy …


Foldamers Reveal And Validate Therapeutic Targets Associated With Toxic Α-Synuclein Self-Assembly, Jemil Ahmed, Tessa C. Fitch, Courtney M. Donnelly, Johnson A. Joseph, Tyler D. Ball, Mikaela M. Bassil, Ahyun Son, Chen Zhang, Aurélie Ledreux, Scott Horowitz, Yan Qin, Daniel Paredes, Sunil Kumar Apr 2022

Foldamers Reveal And Validate Therapeutic Targets Associated With Toxic Α-Synuclein Self-Assembly, Jemil Ahmed, Tessa C. Fitch, Courtney M. Donnelly, Johnson A. Joseph, Tyler D. Ball, Mikaela M. Bassil, Ahyun Son, Chen Zhang, Aurélie Ledreux, Scott Horowitz, Yan Qin, Daniel Paredes, Sunil Kumar

Chemistry and Biochemistry: Faculty Scholarship

Parkinson’s disease (PD) is a progressive neurodegenerative disorder for which there is no successful prevention or intervention. The pathological hallmark for PD involves the self-assembly of functional Alpha-Synuclein (αS) into non-functional amyloid structures. One of the potential therapeutic interventions against PD is the effective inhibition of αS aggregation. However, the bottleneck towards achieving this goal is the identification of αS domains/sequences that are essential for aggregation. Using a protein mimetic approach, we have identified αS sequences-based targets that are essential for aggregation and will have significant therapeutic implications. An extensive array of in vitro, ex vivo, and in vivo assays …


Eukaryotic Initiation Factor 4e (Eif4e) In Complex With Eif4e Binding Protein 1 (4e-Bp1) Binds With Higher Affinity To M7gpppn Cap Of A Subset Of Human Mrnas, Izza F. Nawaz Apr 2022

Eukaryotic Initiation Factor 4e (Eif4e) In Complex With Eif4e Binding Protein 1 (4e-Bp1) Binds With Higher Affinity To M7gpppn Cap Of A Subset Of Human Mrnas, Izza F. Nawaz

Theses and Dissertations

Fluorescence anisotropy binding assays were used to analyze the binding of eIF4E in complex with 4E-BP1 onto the 5’ m7G cap of a subset of mRNA that are known to carry cap-independent translation. These studies suggest that 4E-BP1 increases eIF4E binding affinity to 5’cap of both FGF-9 and HIF-1𝝰.


A Pathway To Solving The Structure Of Cl-Par-4 Tumor Suppressor Protein: Challenges & Findings, Krishna Raut, Samjhana Pandey, Andrea M. Clark, Komala Ponniah, Steven M. Pascal Apr 2022

A Pathway To Solving The Structure Of Cl-Par-4 Tumor Suppressor Protein: Challenges & Findings, Krishna Raut, Samjhana Pandey, Andrea M. Clark, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. Down-regulation of this protein has been reported in a myriad of cancers. Conversely, up-regulation of Par-4 is found to be associated with several neurodegenerative disorders. Par-4 is unique in the sense it can selectively induce apoptosis in cancer cells. For this, caspase-dependent intracellular cleavage of Par-4 is essential to produce the functionally active fragment, cl-Par-4 (caspase-cleaved Par-4). The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells.

Our laboratory is interested in determining the structure of cl-Par-4 and understanding it’s interaction with various …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB and SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen Apr 2022

Sars-Cov-2 Main Protease Inhibitors Repurposed For Hiv-1 Protease Binding, Jacob Minkkinen

CSB and SJU Distinguished Thesis

Severe acute respiratory syndrome (SARS-CoV-2) led to the COVID-19 global pandemic, with over 460 million cases of infection and over 6 million deaths since the start of the pandemic. SARS-CoV-2 is a retrovirus that utilizes a main protease (Mpro). Mpro is a catalytic cys/his protease. Several treatments were proposed to stop the pandemic including repurposing drugs to inhibit the Mpro. Another retrovirus that uses a protease is human immunodeficiency virus (HIV-1) which has been a global epidemic for 40 years and is a devastating disease that attacks the immune system. HIV-1 has infected 79.5 million people and has killed an …


Quantitative Imaging Of Tensile Forces At Cell-Cell Junction With Dna-Based Probes, Puspam Keshri Feb 2022

Quantitative Imaging Of Tensile Forces At Cell-Cell Junction With Dna-Based Probes, Puspam Keshri

Doctoral Dissertations

Mechanical forces are an integral part in biology, they regulate several cellular properties, such as morphology, proliferation, migration. These forces are also involved in receptor signaling and the differentiation of different cell types. Different proteins and biomolecules such as cadherin, integrin, notch proteins are essential elements of these processes. Measuring these intercellular forces are challenging considering the minimal intensity (piconewton-level) of these molecular forces. In our lab, we have developed a membrane DNA tension probe (MDTP) that uses a DNA hairpin module to sense tensile forces and has a lipid anchor to modify onto live-cell membranes. The programmability of DNA …


Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein Feb 2022

Paddling Along The Voltage Gated Sodium Channel Galaxy With Sea Anemone Toxins: Structural Studies Of The Interaction Between The Paddle Motif From Nav1.5div And Sea Anemone Toxin, Adel K. Hussein

Dissertations, Theses, and Capstone Projects

Voltage gated sodium channels (VGSC) are membrane proteins that serve an important function in the central nervous system (CNS), peripheral nervous system (PNS), and cardiac muscles amongst others. The main function of VGSC is in the propagation of electrical signals by depolarizing excitable cells. Nine mammalian VGSC subtypes have been characterized, NaV1.1 – NaV1.9, that are expressed in a tissue specific manner, each with unique gating properties. Numerous diseases have been linked to defects in VGSC including epilepsy, mental retardation, long QT syndrome, and Brugada disease. Furthermore, these channels are one of the primary targets of …


Structural And Biochemical Investigations Of The Initiation Of Dna Replication In Bacteriophage Lambda And Escherichia Coli, Jillian D. Chase Feb 2022

Structural And Biochemical Investigations Of The Initiation Of Dna Replication In Bacteriophage Lambda And Escherichia Coli, Jillian D. Chase

Dissertations, Theses, and Capstone Projects

Faithful transmission of genetic information is requisite for the propagation of all life. DNA replication in each of the three domains of life requires the separation of double stranded DNA (dsDNA) into single stranded DNA (ssDNA) which then serves as a template for genomic duplication of each original DNA strand. Initiation of replication events occurs by tightly regulated processes during which specialized proteins are loaded at a specific locus within the genome, termed the origin of replication, in preparation of bidirectional replication events. A replicative helicase must be loaded or assembled on both strands of DNA at the origin to …


Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal Jan 2022

Development Of Fluorescence Based Approaches To Understand Astrocyte Biology In The Context Of Nicotine And Nicotinic Receptor Activity, Surya P. Aryal

Theses and Dissertations--Chemistry

Smoking and tobacco use (STU) is a major global health problem and worldwide more than six million people die due to tobacco related diseases each year. Although majority of smokers try to quit smoking several times in their life, traditional therapeutic approaches, which focus only on neuronal cells, have a very low success rate. Understanding the effect of nicotine on glial cells, synaptic communication and blood vasculature in the brain can provide further insights on the neurobiology of substance abuse and can potentially help to design better therapeutic approaches. Glial cells are non-excitable cells in the brain which do not …


Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas Jan 2022

Elucidating The Proteasomal Regulatory Mechanism Of Proteasome Activator Pa28Γ /Regγ, Taylor Ann Thomas

Graduate Theses, Dissertations, and Problem Reports

Virtually all cellular processes are precisely regulated by the proteasome which is the primary enzyme responsible for the degradation of misfolded, damaged, or no longer necessary soluble proteins. To prevent any untimely degradation of these target protein substrates and protect the cell, the proteasome is tightly regulated via adaptor proteins, known as proteasomal regulators. There are many classes of proteasomal regulators each with their own unique structures, functions, and effects on protein degradation through the proteasome. One such class is the 11S family of proteasomal regulators which are also referred to as PA26/28, or REG. The 11S family are ATP-independent …


The Role Of Charge On Dna Packaging And Integrity Within Reconstituted Peptide-Dna Assemblies, Ehigbai Oikeh Jan 2022

The Role Of Charge On Dna Packaging And Integrity Within Reconstituted Peptide-Dna Assemblies, Ehigbai Oikeh

Theses and Dissertations--Chemistry

In nature, DNA exists primarily in a highly compacted form. The compaction of DNA in vivo is mediated by cationic proteins; histone in somatic nuclei and arginine-rich peptides called protamines in sperm chromatin. The packaging in the sperm nucleus is significantly higher than somatic nuclei resulting in a final volume roughly 1/20th that of a somatic nucleus. This tight packaging results in a near crystalline packaging of the DNA helices. While the dense packaging of DNA in sperm nuclei is considered essential for both efficient genetic delivery as well as DNA protection against damage by mutagens and oxidative species, …


Investigating The Main Protease (Mpro) Of Sars-Cov-2 As A Potential Drug Target, Valerie Giovina Pascetta Jan 2022

Investigating The Main Protease (Mpro) Of Sars-Cov-2 As A Potential Drug Target, Valerie Giovina Pascetta

Honors Theses and Capstones

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 19 (COVID-19) pandemic has claimed the lives of roughly 6.2 million people worldwide as of May 2022. The virus’s main protease (Mpro ) has been identified as an attractive drug target due to the critical role it plays in the viral life cycle. The roughly 34 kDa Mpro cleaves functional viral polypeptides out of two long polyproteins at conserved cut sites, allowing them to fulfill their role in processes like transcription and replication. Here, we have studied the enzymatic activity …