Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Understanding And Exploiting Protein Allostery And Dynamics Using Molecular Simulations, Sukrit Singh Jan 2021

Understanding And Exploiting Protein Allostery And Dynamics Using Molecular Simulations, Sukrit Singh

Arts & Sciences Electronic Theses and Dissertations

Protein conformational landscapes contain much of the functionally relevant information that is useful for understanding biological processes at the chemical scale. Understanding and mapping out these conformational landscapescan provide valuable insight into protein behaviors and biological phenomena, and has relevance to the process of therapeutic design.

While structural biology methods have been transformative in studying protein dynamics, they are limited by technicallimitations and have inherent resolution limits. Molecular dynamics (MD) simulations are a powerful tool for exploring conformational landscapes, and provide atomic-scale information that is useful in understanding protein behaviors. With recent advances in generating datasets of large timescale simulations …


Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz Sep 2018

Supercharged Models Of Intrinsically Disordered Proteins And Their Utility In Sensing, Peter J. Schnatz

Dissertations, Theses, and Capstone Projects

In this thesis I show that greatly increasing the magnitude of a protein’s net charge using surface supercharging transforms that protein into a ligand-gated or counterion-gated conformational molecular switch. To demonstrate this I first modified the designed helical bundle hemoprotein H4 using simple molecular modeling, creating a highly charged protein which both unfolds reversibly at low ionic strength and undergoes the ligand-induced folding transition commonly observed in signal transduction by intrinsically disordered proteins in biology. Due to the high surface charge density, ligand binding to this protein is allosterically activated by low concentrations of divalent cations and the polyamine spermine. …


Computational Studies On R67 Dihydrofolate Reductase: An Investigation Into Its Unique Binding Patterns, Chuanyin Shi Jan 2009

Computational Studies On R67 Dihydrofolate Reductase: An Investigation Into Its Unique Binding Patterns, Chuanyin Shi

Theses and Dissertations in Biomedical Sciences

R67 dihydrofolate reductase (R67 DHFR) is a plasmid encoded enzyme which catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF) using NADPH as a cofactor. R67 DHFR is a homo-tetramer and D2 symmetric. It contains only one active site, which spans the central channel of the enzyme. The active site can bind either two reactants (DHF), two cofactors (NADPH) or one of each (NADPH/DHF), which is the productive ternary complex (i.e. the complex which yields product). In order to favor formation of the productive complex, this enzyme exhibits binding cooperativity. Unlike other allosteric enzymes which achieve binding cooperativity through conformational …