Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry

Deciphering The Catalytic Mechanism Of Human Manganese Superoxide Dismutase, Jahaun Azadmanesh Dec 2020

Deciphering The Catalytic Mechanism Of Human Manganese Superoxide Dismutase, Jahaun Azadmanesh

Theses & Dissertations

The livelihood of human cells is heavily dependent on the ability to modulate the presence of highly reactive oxygen-based molecules termed reactive oxygen species (ROS). In excess, ROS facilitate oxidative damage to the macromolecules of cellular life. SODs are the major family of antioxidant proteins that prevent the buildup of overwhelming amounts of ROS within cells. Sometimes dubbed the “first line of defense” against oxidative damage, SODs defend against the harmful accumulation of ROS by eliminating superoxide. Superoxide is a ROS itself that is also a precursor to much more harmful ROS molecules. MnSOD is the manganese containing form of …


Molecular Mechanism Of Early Amyloid Self-Assembly Revealed By Computational Modeling, Mohtadin Hashemi May 2018

Molecular Mechanism Of Early Amyloid Self-Assembly Revealed By Computational Modeling, Mohtadin Hashemi

Theses & Dissertations

Protein misfolding followed by the formation of aggregates, is an early step in the cascade of conformational changes in a protein that underlie the development of several neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Efforts aimed at understanding this process have produced little clarity and the mechanism remains elusive.

Here, we demonstrate that the hairpin fold, a structure found in the early folding intermediates of amyloid b, induces morphological and stability changes in the aggregates of Aβ(14-23) peptide. We structurally characterized the interactions of monomer and hairpin using extended molecular dynamics (MD) simulations, which revealed a novel intercalated type complex. …


The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest May 2018

The Beta-Catenin/Muc1.Ct Interaction In Pancreatic Cancer, Edwin Wiest

Theses & Dissertations

MUC1 is overexpressed in over 90% of pancreatic cancer cases, and its interaction with beta-catenin promotes progression of the disease. Various in vitro and in vivo methods show that beta-catenin and MUC1 interact by way of the cytoplasmic tail of MUC1 (MUC1.CT). This interaction occurs in the membrane of pancreatic cancer cells but is found to a smaller extent in the nucleus as well. Biophysical methods suggest that MUC1 interacts with beta-catenin through a sequence of amino acids in the tail of MUC1 that sit very near the transmembrane domain of MUC1. In pancreatic ductal adenocarcinoma cells, it appears that …


Defining The Role Of Phosphorylation And Dephosphorylation In The Regulation Of Gap Junction Proteins, Hanjun Li Dec 2016

Defining The Role Of Phosphorylation And Dephosphorylation In The Regulation Of Gap Junction Proteins, Hanjun Li

Theses & Dissertations

Gap junctions are intercellular channels that permit the free passage of ions, small metabolites, and signaling molecules between neighboring cells. In the diseased human heart, altered ventricular gap junction organization and connexin expression (i.e., remodeling) are key contributors to rhythm disturbances and contractile dysfunction. Connexin43 (Cx43) is the dominant gap junction protein isoform in the ventricle which is under tight regulation by serine/tyrosine phosphorylation. Phosphorylation and dephosphorylation regulate many aspects of Cx43 function including trafficking, assembly and disassembly, electrical and metabolic coupling at the plaque, as well as to modulate the interaction with other proteins.

Serine phosphorylation has long been …