Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry

Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang Nov 2016

Development Of In Vivo Systems For Detecting And Studying Ribosome Inhibition By Small Molecules, Shijie Huang

Chemistry and Chemical Biology ETDs

The ribosome is the quintessential antibacterial drug target, with many structurally and mechanistically distinct classes of antibacterial agents acting by inhibiting ribosome function. Detecting and quantifying ribosome inhibition by small molecules and investigating their binding modes and mechanisms of action are critical to antibacterial drug discovery and development efforts. To develop a ribosome inhibition assay that is operationally simple, yet provides direct information on the drug target and the mechanism of action, we have developed engineered E. coli strains harboring an orthogonal ribosome controlled green fluorescent protein reporter that produce fluorescent signal when the O-ribosome is inhibited. As a proof …


Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies, …


Role Of Sumoylation In Mitochondrial Division In Tetrahymena Thermophila, Ramya Modi, James Forney Aug 2016

Role Of Sumoylation In Mitochondrial Division In Tetrahymena Thermophila, Ramya Modi, James Forney

The Summer Undergraduate Research Fellowship (SURF) Symposium

SUMOylation is a post translation modification that involves the addition of a small protein called SUMO, Small Ubiquitin-like MOdifier to a target protein. It is an important mechanism for the regulation of gene expression, the maintenance of genomic stability and in modifying nuclear proteins. More recently evidence has emerged for its importance in regulating mitochondrial fission and fusion in mammalian cells. This study evaluates the parameters for optimal staining of Tetrahymena thermophila mitochondria using two different dyes and then examines different cell lines with defects in the SUMOylation pathway. The first staining method uses Mitotracker Green, a vital stain that …


Tunable Nano-Delivery System For Cancer Treatment: A New Approach For Targeted Localized Drug Delivery, Rana Falahat Jun 2016

Tunable Nano-Delivery System For Cancer Treatment: A New Approach For Targeted Localized Drug Delivery, Rana Falahat

USF Tampa Graduate Theses and Dissertations

Localized drug delivery systems have been widely studied as potential replacements for conventional chemotherapy with the capability of providing sustained and controlled drug release in specific targeted sites. They offer numerous benefits over conventional chemotherapy such as enhancing the stability of embedded drugs and preserving their anticancer activity, providing sustained and controlled drug release in the tumor site, reducing toxicity and diminishing subsequent side effects, minimizing the drug loss, averting the need for frequent administrations, and minimizing the cost of therapy.

The aim of this study is to develop a localized drug delivery system with niosomes embedded in a chitosan …


Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez May 2016

Hiv Vaccines: Progress, Limitations And A Crispr/Cas9 Vaccine, Omar A. Garcia Martinez

Biology: Student Scholarship & Creative Works

ABSTRACT: The HIV-1 pandemic continues to thrive due to ineffective HIV-1 vaccines. Historically, the world’s most infectious diseases, such as polio and smallpox, have been eradicated or have come close to eradication due to the advent of effective vaccines. Highly active antiretroviral therapy is able to delay the onset of AIDS but can neither rid the body of HIV-1 proviral DNA nor prevent further transmission. A prophylactic vaccine that prevents the various mechanisms HIV-1 has to evade and attack our immune system is needed to end the HIV-1 pandemic. Recent advances in engineered nuclease systems, like the CRISPR/Cas9 system, have …


Quantitative Comparison Of A Nanoengineered Alumina Coated Cnt Arrays To Sio2 Coated Cnts And Solution Based Delivery System, Shree Aier Jan 2016

Quantitative Comparison Of A Nanoengineered Alumina Coated Cnt Arrays To Sio2 Coated Cnts And Solution Based Delivery System, Shree Aier

Undergraduate Research & Mentoring Program

To meet the growing need for nanoengineered biocompatible materials to serve as drug delivery platforms, in this research, carbon nanotube arrays were fabricated by chemical vapor deposition, followed by an alumina coating by the high yielding, tightly controlled atomic layer deposition. This nanoengineered vertically aligned alumina nanowire array serves as a platform for delivering antigens, which act as cancer adjuvants. The physicochemical characteristics of the nanowires (NWs) can significantly influence the delivery of a biomolecule to immune cells. To investigate the material characteristics, the delivery efficiency of the antigen using NWs was quantitatively assessed by flow cytometry. Further, the mechanism …


Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth Jan 2016

Investigation Of Enzymatically Synthesized Glycogen As A Novel Nanodendrimer For Therapeutic Delivery, Sarah Ann Engelberth

Legacy Theses & Dissertations (2009 - 2024)

The field of medicinal chemistry is ever expanding, designing and discovering new therapeutic strategies. Oftentimes, it is challenging for these therapeutics to undergo clinical translation due to ineffective administration or unwanted toxicity in vivo. As such, drug delivery vehicles are designed to overcome these hurdles, allowing for delivery to the site of action by improving biodistribution, protecting therapeutic cargo, and decreasing toxicity. The work presented here aims to investigate a naturally-derived carbohydrate nanodendrimer, enzymatically synthesized glycogen (ESG) for drug delivery. This nontoxic, highly-branched, glucose-based structure has interior void volumes to allow for cargo encapsulation as well as a large density …


Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič Jan 2016

Effects Of High Voltage Nanosecond Electric Pulses On Eukaryotic Cells (In Vitro): A Systematic Review, Tina Batista Napotink, Matej Reberšek, P. Thomas Vernier, Babara Mali, Damijan Miklavčič

Bioelectrics Publications

For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1–10 ns, B: 11–100 ns and C: …