Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry

Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon Dec 2017

Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon

Dissertations & Theses (Open Access)

Salt inducible kinase 1 (SIK1) has been considered a stress-inducible kinase since it was first cloned in 1999. Continued efforts since this time have been dedicated to characterizing the structure and function of SIK1. Such research has laid the ground work for our understanding of SIK1 action and regulation in tissue and stimuli dependent manners. The fundamental findings of this dissertation continue in this tradition and include investigations of SIK1 regulatory mechanisms in skeletal muscle cells, the cellular and physiological effects of SIK1 loss of function in vitro and in vivo, and intracellular metabolic and mitochondrial regulation by this …


Identification Of Plant Extracts That Inhibit The Formation Of Diabetes-Linked Iapp Amyloid, Ana Lucia Fuentes, Kathleen Hennessy, Jacob Pascual, Nicole Pepe, In Wang, Cynthia Chaggan, Jessica Martinez, Evelyn Rivera, Paola Cota, Christina Cunha, Luiza A. Nogaj, David A. Moffet Mar 2016

Identification Of Plant Extracts That Inhibit The Formation Of Diabetes-Linked Iapp Amyloid, Ana Lucia Fuentes, Kathleen Hennessy, Jacob Pascual, Nicole Pepe, In Wang, Cynthia Chaggan, Jessica Martinez, Evelyn Rivera, Paola Cota, Christina Cunha, Luiza A. Nogaj, David A. Moffet

Chemistry and Biochemistry Faculty Works

The extracts of 27 vegetables, spices and herbs were screened for their functional ability to inhibit the aggregation of islet amyloid polypeptide (IAPP, amylin) into toxic amyloid aggregates. The aggregation of IAPP has been directly linked to the death of pancreatic β-islet cells in type 2 diabetes. Inhibiting the aggregation of IAPP is believed to have the potential to slow, if not prevent entirely, the progression of this disease. As vegetables, spices and herbs are known to possess many different positive health effects, the extracts of 27 plants (abundant within the United States and spanning several plant families) were screened …


Expression Of Insulin Responsive Genes In Insulin Resistant Conditions, And The Effect Of Selenium On Gene Expression, David L. Ruff Dec 2015

Expression Of Insulin Responsive Genes In Insulin Resistant Conditions, And The Effect Of Selenium On Gene Expression, David L. Ruff

Masters Theses

Chronically high blood glucose levels lead to many problems, such as insulin resistance, the hallmark of Type II diabetes. Increased flux through the hexosamine biosynthesis pathway is one mechanism by which high glucose as well as glucosamine has been shown to induce insulin resistance. This study tests the effects of glucosamine induced insulin resistance on insulin regulation of the metabolic genes glucose-6-phosphate dehydrogenase (G6PDH) and fatty acid synthase (FAS) as well as insulin responsive proteins tribbles homolog (TRIB3) and sterol regulatory element binding protein (SERBP-1c) 1c.

Selenium, a micronutrient has been shown to be an effective insulin mimetic in Type …


Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle Dec 2013

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle

Michael Menze

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle Dec 2013

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle

Faculty Research & Creative Activity

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Identification Of Disulfide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle Dec 2013

Identification Of Disulfide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1, Morgan E. Roberts, Jacquelyn P. Crail, Megan M. Laffoon, William G. Fernandez, Michael A. Menze, Mary E. Konkle

Faculty Research & Creative Activity

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.


Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1., Morgan Roberts, Jacquelyn Crail, Megan Laffoon, William Fernandez, Michael Menze, Mary Konkle Dec 2013

Identification Of Disufide Bond Formation Between Mitoneet And Glutamate Dehydrogenase 1., Morgan Roberts, Jacquelyn Crail, Megan Laffoon, William Fernandez, Michael Menze, Mary Konkle

Faculty Scholarship

MitoNEET is a protein that was identified as a drug target for diabetes, but its cellular function as well as its role in diabetes remains elusive. Protein pull-down experiments identified glutamate dehydrogenase 1 (GDH1) as a potential binding partner. GDH1 is a key metabolic enzyme with emerging roles in insulin regulation. MitoNEET forms a covalent complex with GDH1 through disulfide bond formation and acts as an activator. Proteomic analysis identified the specific cysteine residues that participate in the disulfide bond. This is the first report that effectively links mitoNEET to activation of the insulin regulator GDH1.