Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Biochemistry

Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant Jan 2021

Use Of Small Molecule Fanconi Anemia Pathway Inhibitors As Sensitizing Agents To Laromustine., Sam W. Marchant

Honors Theses

Laromustine is an experimental chemotherapeutic sulfonyl hydrazine prodrug shown in clinical trials to be effective against acute myeloid leukemia. The mechanism of action of laromustine involves interstrand crosslinking, via chloroethylation, and enzyme inhibition, caused by carbamoylation. The work described herein aims to investigate whether inhibition of the replication-dependent interstrand crosslink repair Fanconi Anemia pathway further sensitizes cells to laromustine. By measuring metabolic activity immediately after drug exposure, we find laromustine to be equally as cytotoxic towards Fanconi Anemia deficient and wild type cells. However, through clonogenic assays we show Fanconi Anemia mutations sensitize cells to laromustine’s anti-proliferative effect. Furthermore, we …


Novel Cyanoximates As An Alternative In Cancer Chemotherapy, Kafayat Aderonke Yusuf May 2020

Novel Cyanoximates As An Alternative In Cancer Chemotherapy, Kafayat Aderonke Yusuf

MSU Graduate Theses

Chemotherapy is one of the most effective treatment plans for several cancer types. The recurrent side effects derived from chemotherapy agents have warranted the search for novel chemical compounds with better efficacy and minimal side effects. In line with this idea, I investigated effects of a group of newly synthesized metal based chemical compounds called cyanoximates on HeLa human cancer cells. Cyanoximates used were Pt(DECO)2, Pt(MCO)2, and Pd(DECO)2 along with the chemotherapy drug cisplatin as a positive control. I found that the metal cyanoximates reduced cell viability via apoptosis, and that Pt(DECO)2 was most …


Ototoxicity Of Cisplatin, Pyriplatin, And Phenathriplatin In The Auditory Hybridoma Cell Line, Hei-Oc1, Alexandra Johnston Jan 2020

Ototoxicity Of Cisplatin, Pyriplatin, And Phenathriplatin In The Auditory Hybridoma Cell Line, Hei-Oc1, Alexandra Johnston

Mahurin Honors College Capstone Experience/Thesis Projects

Cisplatin is an anti-cancer drug which is effective against several cancers, but also causes harmful side-effects, including ototoxicity and hearing loss. While cisplatin is a bifunctional compound that forms coordinate covalent bonds with both strands of DNA, recently investigated monofunctional platinum(II) compounds bind to only one DNA strand, and may activate different cell-death mechanisms. As several monofunctional platinum(II) compounds have anti-cancer properties, but could target different cell-death pathways, they could potentially have different and reduced side-effects. In this study, the HEI-OC1 auditory hybridoma cell line was used to investigate the ototoxicity of cisplatin and two monofunctional platinum(II) compounds, phenanthriplatin and …


A Look At Gene Control: Tracking The Ccnd1 Gene, Bryan Anders Jan 2020

A Look At Gene Control: Tracking The Ccnd1 Gene, Bryan Anders

Mahurin Honors College Capstone Experience/Thesis Projects

Cancer occurs when the cell does not properly control its own cell cycle. It then replicates in an out of control fashion leading to the death of various organs and then the demise of the organism as a whole. As it seems to have always been a problem for cell-based life, certain safeguards against cancer have been evolved over time. One such method comes in the form of prevention via cyclin proteins, which are encoded from cyclin genes. The gene that is the focus of this research is the CCND1, or cyclin D1, gene that controls the progression through various …


Relationships Of Protein Biomarkers Of The Urokinase Plasminogen Activator System With Expression Of Their Cognate Genes In Primary Breast Carcinomas., Seth B. Sereff May 2019

Relationships Of Protein Biomarkers Of The Urokinase Plasminogen Activator System With Expression Of Their Cognate Genes In Primary Breast Carcinomas., Seth B. Sereff

College of Arts & Sciences Senior Honors Theses

Background: Urokinase plasminogen activator (uPA), its receptor uPAR and serine protease inhibitors PAI-1 or PAI-2 play key roles in tissue membrane remodeling and invasion of basement membranes by induction of a fibrinolytic pathway. Earlier studies reported that uPA and PAI-1 protein levels in breast carcinomas assist in prediction of response to chemotherapy. Our goal is to develop molecular signatures of candidate genes and identify novel relationships with these four protein biomarkers that demonstrate clinical utility for assessment of breast carcinoma outcomes.

Methods: This retrospective study used de-identified biomarker results and clinical outcomes from primary breast cancers that were stored in …


Mechanisms And Regulation Of Resection In Dna Damage Response, Sharad C. Paudyal Aug 2017

Mechanisms And Regulation Of Resection In Dna Damage Response, Sharad C. Paudyal

Arts & Sciences Electronic Theses and Dissertations

Deoxyribonucleic acid (DNA) encodes genetic information essential for cell survival and function. However, it is constantly under assault from endogenous and exogenous damaging agents that not only threaten our own survival but also affect the faithful transmission of genetic information to our offspring. Double-strand breaks (DSBs) are one of the most hazardous forms of DNA damage, which if unrepaired or improperly repaired could lead to plethora of systemic human diseases including cancer. To deal with this problem, cells have evolved with a mechanism called DNA damage response (DDR) to detect, signal, and repair the breaks by inducing multiple cellular events. …


Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena Feb 2014

Metabolic Checkpoints In Cancer Cell Cycle, Mahesh Saqcena

Dissertations, Theses, and Capstone Projects

Growth factors (GFs) as well as nutrient sufficiency regulate cell division in metazoans. The vast majority of mutations that contribute to cancer are in genes that regulate progression through the G1 phase of the cell cycle. A key regulatory site in G1 is the growth factor-dependent Restriction Point (R), where cells get permissive signals to divide. In the absence of GF instructions, cells enter the quiescent G0 state. Despite fundamental differences between GF signaling and nutrient sensing, they both have been confusingly referred to as R and therefore by definition considered to be a singular event in G1. Autonomy from …


Lipid Dependence In Ras-Driven Tumors, Darin Salloum Feb 2014

Lipid Dependence In Ras-Driven Tumors, Darin Salloum

Dissertations, Theses, and Capstone Projects

Over past decade, metabolic alterations in cancer cells have received a substantial amount of interest. It had been established that cancer cells undergo a significant amount of metabolic alterations, and some of these alterations are similar to those in normal highly proliferative cells. However, it is becoming more apparent that many of the metabolic alterations are specific to particular oncogenic signaling pathways. Although altered metabolic machinery makes cancer cells more efficient at promoting growth when nutrients are supplied at the sufficient amounts, the dependency of cancer cells on particular metabolic reprogramming deems cancer cells susceptible to disruptions within metabolic network. …


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

Dissertations & Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates …


Maternal Consumption Of Canola Oil Suppressed Mammary Gland Tumorigenesis In C3(1) Tag Mice Offspring, Gabriela Ion, Juliana A. Akinsete, W. Elaine Hardman Oct 2012

Maternal Consumption Of Canola Oil Suppressed Mammary Gland Tumorigenesis In C3(1) Tag Mice Offspring, Gabriela Ion, Juliana A. Akinsete, W. Elaine Hardman

Gabriela Ion

Background: Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring. Methods: Female SV 129 mice were divided into two groups and placed on …


Maternal Consumption Of Canola Oil Suppressed Mammary Gland Tumorigenesis In C3(1) Tag Mice Offspring, Gabriela Ion, Juliana A. Akinsete, W. Elaine Hardman Aug 2012

Maternal Consumption Of Canola Oil Suppressed Mammary Gland Tumorigenesis In C3(1) Tag Mice Offspring, Gabriela Ion, Juliana A. Akinsete, W. Elaine Hardman

Elaine Hardman Ph.D.

Background: Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring. Methods: Female SV 129 mice were divided into two groups and placed on …


Epigenetic Modification As An Enabling Mechanism For Leukemic Transformation, Vincent Sollars Aug 2012

Epigenetic Modification As An Enabling Mechanism For Leukemic Transformation, Vincent Sollars

Vincent E Sollars

Cancer is now thought of as a fundamentally genetic disease, in that changes in the genome result in aberrant gene expression of oncogenes and tumor suppressor genes to promote oncogenesis. However, with our increasing knowledge of gene regulation, it is becoming obvious that changes in nucleotide sequence are not the sole mechanism for eliciting changes in transcription. An additional layer of regulation of gene expression, called epigenetics, is now being realized as increasingly important in oncogenesis. Epigenetics is defined as non-sequence based changes in chromatin that elicit changes in gene expression that are propagated through mitosis and/or meiosis. The alleles …


Diversity In Secreted Pla2-Iia Activity Among Inbred Mouse Strains That Are Resistant Or Susceptible To Apcmin/+ Tumorigenesis, Marina Markova, Revati Koratkar, Karen Silverman, Vincent Sollars, Melina Macphee-Pellini, Rhonda Walters, Juan Palazzo, Arthur Buchberg, Linda Siracusa, Steven Farber Aug 2012

Diversity In Secreted Pla2-Iia Activity Among Inbred Mouse Strains That Are Resistant Or Susceptible To Apcmin/+ Tumorigenesis, Marina Markova, Revati Koratkar, Karen Silverman, Vincent Sollars, Melina Macphee-Pellini, Rhonda Walters, Juan Palazzo, Arthur Buchberg, Linda Siracusa, Steven Farber

Vincent E Sollars

The secreted phospholipase A2 type IIA (Pla2g2a) gene was previously identified as a modifier of intestinal adenoma multiplicity in ApcMin/+ mice. To determine if intestinal secreted phospholipase A2 (sPLA2) activity was also attenuated in susceptible strains, we developed a sensitive assay to directly quantitate sPLA2 activity in the murine intestinal tract utilizing a fluorescent BODIPY-labeled phospholipid substrate. Here, we report assay conditions that distinguish between secreted and cytosolic PLA2 enzyme activities in extracts of intestinal tissue. The small intestine exhibited higher activity levels than the large intestine. Consistent with predictions from the sPLA …


The Epigenomic Viewpoint On Cellular Differentiation Of Myeloid Progenitor Cells As It Pertains To Leukemogenesis, Vincent E. Sollars Aug 2012

The Epigenomic Viewpoint On Cellular Differentiation Of Myeloid Progenitor Cells As It Pertains To Leukemogenesis, Vincent E. Sollars

Vincent E Sollars

The new millennium has brought with it a surge of research in the field of epigenetics. This has included advances in our understanding of stem cell characteristics and mechanisms of commitment to cell lineages prior to differentiation. The nature of stem cells is similar to that of malignant cells in that they have unlimited self-renewal and protection from apoptosis, leading researchers to suspect that stem cells are the target of oncogenesis. This review will explore the idea of how epigenetic control of gene expression may contribute to mechanisms controlling differentiation of myeloid progenitor cells and its importance to our understanding …


Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified By Podoplanin, To Inhibit Transformed Cell Growth And Migration, Jhon Ochoa-Alvarez, Harini Krishnan, Yongquan Shen, Nimish Acharya, Min Han, Dean Mcnulty, Hitoki Hasegawa Jul 2012

Plant Lectin Can Target Receptors Containing Sialic Acid, Exemplified By Podoplanin, To Inhibit Transformed Cell Growth And Migration, Jhon Ochoa-Alvarez, Harini Krishnan, Yongquan Shen, Nimish Acharya, Min Han, Dean Mcnulty, Hitoki Hasegawa

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors …


Maternal Consumption Of Canola Oil Suppressed Mammary Gland Tumorigenesis In C3(1) Tag Mice Offspring, Gabriela Ion, Juliana A. Akinsete, W. Elaine Hardman Mar 2010

Maternal Consumption Of Canola Oil Suppressed Mammary Gland Tumorigenesis In C3(1) Tag Mice Offspring, Gabriela Ion, Juliana A. Akinsete, W. Elaine Hardman

Biochemistry and Microbiology

Background: Maternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring.

Methods: Female SV 129 mice were divided into two groups and placed on …


Structural Investigation Of Atp-Utilizing Enzymes: Structures Involved In H+ Homeostasis And The Proliferation Of Hormone-Dependent Cancers, Zacariah Louis Hildenbrand Jan 2010

Structural Investigation Of Atp-Utilizing Enzymes: Structures Involved In H+ Homeostasis And The Proliferation Of Hormone-Dependent Cancers, Zacariah Louis Hildenbrand

Open Access Theses & Dissertations

ATP is a multifunctional nucleotide considered to be the "molecular unit of currency" of intracellular energy transfer. ATP is utilized ubiquitously for the transport of chemical energy within the cell in addition to acting as a substrate in the regulation of many metabolic and signaling transduction pathways such as kinase-mediated signaling cascades. Interestingly, the functional mechanisms of many enzymes require the binding of ATP to trigger key structural and conformational changes that ultimately result in enzyme-directed catalysis. Two of the most omnipresent ATPases within the cell include the V-ATPase rotary proton pump and the Hsp90 protein-folding chaperone. Structural and biochemical …


The Epigenomic Viewpoint On Cellular Differentiation Of Myeloid Progenitor Cells As It Pertains To Leukemogenesis, Vincent E. Sollars May 2005

The Epigenomic Viewpoint On Cellular Differentiation Of Myeloid Progenitor Cells As It Pertains To Leukemogenesis, Vincent E. Sollars

Biochemistry and Microbiology

The new millennium has brought with it a surge of research in the field of epigenetics. This has included advances in our understanding of stem cell characteristics and mechanisms of commitment to cell lineages prior to differentiation. The nature of stem cells is similar to that of malignant cells in that they have unlimited self-renewal and protection from apoptosis, leading researchers to suspect that stem cells are the target of oncogenesis. This review will explore the idea of how epigenetic control of gene expression may contribute to mechanisms controlling differentiation of myeloid progenitor cells and its importance to our understanding …