Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biochemistry

Characterization Of The Clostridioides Difficile Glycosyl Hydrolase Ccsz, Brian Lowrance Jan 2023

Characterization Of The Clostridioides Difficile Glycosyl Hydrolase Ccsz, Brian Lowrance

Theses and Dissertations (Comprehensive)

Bacteria inhabit many of the harshest environments on Earth; persisting and thriving in conditions thought to be unsuitable for life. One common strategy to withstand these environments is the formation of a biofilm. Biofilm composition varies greatly, depending on the underlying community that produces it. Cellulose, a polymer consistently prevalent in biofilms, has been identified as a virulence factor in many pathogens and is suspected to be involved in pathogenesis by Clostridioides difficile. C. difficile is the #1 cause of hospital acquired diarrhea, which can range from mild to life-threatening infections. Biofilm formation is hypothesized to be involved in …


A Bioinformatic Analysis Of The Biosynthesis Of Carotenoids In The Copepod Tigriopus Californicus, Anchalya Balasubramaniam Jan 2021

A Bioinformatic Analysis Of The Biosynthesis Of Carotenoids In The Copepod Tigriopus Californicus, Anchalya Balasubramaniam

Theses and Dissertations (Comprehensive)

Abstract

Biological pigments, also called biochromes, are coloured compounds which are displayed by a variety of life forms, including animals, due to selective colour absorption. The combination of light absorption and reflection enables each pigment to portray a distinct colour which results in the broad spectrum of colours we observe in our surroundings. Carotenoids are a large group of yellow, orange, and red biological pigments found in living organisms. Our current biomolecular knowledge of carotenoids is heavily derived from studying the pathway in photosynthetic prokaryotes, bacteria, fungi, and plants. Carotenoid pigments are exceptionally multifunctional as they act as photo-protectors against …


Functional Characterization Of O-Acetyltransferase Wssi: Role In Bacterial Cellulose Acetylation Of Achromobacter Insuavis And Pseudomonas Fluorescens, Alysha Burnett Jan 2019

Functional Characterization Of O-Acetyltransferase Wssi: Role In Bacterial Cellulose Acetylation Of Achromobacter Insuavis And Pseudomonas Fluorescens, Alysha Burnett

Theses and Dissertations (Comprehensive)

Cellulose biofilms consist of a community of bacterial cells encased in a self-produced matrix of polymers (e.g. exopolysaccharides, such as cellulose) that facilitate a firm adherence to surfaces. The acetylation (addition of an acetyl group on carbohydrates) is crucial in virulence; thereby in some cases allowing opportunistic bacteria to cause harmful diseases. Pertaining to this research, the wrinkly spreader (WS) genotype of Pseudomonas fluorescens colonizes the air-liquid interface on food, water sources and human tissue to form a robust biofilm with the ability to spread across surfaces. The composition of this biofilm largely consists of bacterial cellulose polymers …


Characterization Of Wssf; A Putative Acetyltransferase From Achromobacter Insuavis And Pseudomonas Fluorescens, Cody Reese Jan 2019

Characterization Of Wssf; A Putative Acetyltransferase From Achromobacter Insuavis And Pseudomonas Fluorescens, Cody Reese

Theses and Dissertations (Comprehensive)

Biofilms are a survival mechanism commonly employed by communities of bacteria for adherence and protection. Bacteria produce a matrix of polymers (e.g. exopolysaccharides, such as cellulose) that allow them to exert control on their local environment. In the case of cellulose biofilms, acetylation (addition of acetate on carbohydrates) is paramount for polymer integrity and in some cases virulence. For this research, the wrinkly spreader (WS) genotype of the emergent human pathogen Achromobacter insuavis facilitates infections of the eyes of contact lens wearers and the lungs of Cystic Fibrosis patients (CF). Chronic infections have created a growing concern for the protective …


Purification And Characterization Of Bcsc; An Integral Component Of Bacterial Cellulose Export, Emily D. Wilson Ms Jan 2015

Purification And Characterization Of Bcsc; An Integral Component Of Bacterial Cellulose Export, Emily D. Wilson Ms

Theses and Dissertations (Comprehensive)

Biofilms are a growing concern in the medical field due to their increased resistance to antibiotics. When found in a biofilm, bacteria can have antibiotic resistance 10-1000 times that of their planktonic counterparts. Therefore, it is important to study the formation of biofilms. Cellulose biofilms are formed by Enterobacteriaceae, such as many Escherichia coli and Salmonella spp. strains. Biofilms provide these species with benefits including antimicrobial protection, development of bacterial communities, promotion of DNA exchange, uptake of nutrients, and, in the case of cellulose biofilms, immune system evasion. Cellulose biofilms are controlled by the Bacterial cellulose synthesis (Bcs) complex located …


Distribution And Elimination Of 3-Trifluoromethyl-4-Nitrophenol (Tfm) By Sea Lamprey (Petromyzon Marinus) And Non-Target, Rainbow Trout (Oncorhynchus Mykiss) And Lake Sturgeon (Acipenser Fulvescens), Michael W. Le Clair Jan 2014

Distribution And Elimination Of 3-Trifluoromethyl-4-Nitrophenol (Tfm) By Sea Lamprey (Petromyzon Marinus) And Non-Target, Rainbow Trout (Oncorhynchus Mykiss) And Lake Sturgeon (Acipenser Fulvescens), Michael W. Le Clair

Theses and Dissertations (Comprehensive)

The pesticide, 3-trifluoromethyl-4-nitrophenol (TFM), has been highly successful in the control of sea lamprey (Petromyzon marinus) populations in the Great Lakes. Treatments with TFM involve applying it to streams, where it targets larval sea lamprey which live burrowed in the stream substrate. While the toxic mechanism of TFM has been elucidated, and its effects on sea lamprey described, its effects on non-target fish species such as rainbow trout (Oncorhynchus mykiss) and lake sturgeon (Acipenser fulvescens) are not as well understood. The present work demonstrated that rainbow trout show a great capacity to detoxify the lampricide using glucuronidation, when exposed to …