Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Biochemistry

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra Oct 2017

Photosensing And Thermosensing By Phytochrome B Require Both Proximal And Distal Allosteric Features Within The Dimeric Photoreceptor, E Sethe Burgie, Adam N. Bussell, Shu-Hui Lye, Tong Wang, Weiming Hu, Katrice E. Mcloughlin, Erin L. Weber, Huilin Li, Richard D. Vierstra

Biology Faculty Publications & Presentations

Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream …


Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal Nov 2016

Phytochrome B Integrates Light And Temperature Signals In Arabidopsis, Martina Legris, Cornelia Klose, E Sethe Burgie, Cecilia Costigliolo Rojas Rojas, Maximiliano Neme, Andreas Hiltbrunner, Philip A. Wigge, Eberhard Schäfer, Richard D. Vierstra, Jorge J. Casal

Biology Faculty Publications & Presentations

Ambient temperature regulates many aspects of plant growth and development, but its sensors are unknown. Here, we demonstrate that the phytochrome B (phyB) photoreceptor participates in temperature perception through its temperature-dependent reversion from the active Pfr state to the inactive Pr state. Increased rates of thermal reversion upon exposing Arabidopsis seedlings to warm environments reduce both the abundance of the biologically active Pfr-Pfr dimer pool of phyB and the size of the associated nuclear bodies, even in daylight. Mathematical analysis of stem growth for seedlings expressing wild-type phyB or thermally stable variants under various combinations of light and temperature revealed …


Purification Of 26s Proteasomes And Their Subcomplexes From Plants, Richard S. Marshall, David C. Gemperline, Richard D. Vierstra Oct 2016

Purification Of 26s Proteasomes And Their Subcomplexes From Plants, Richard S. Marshall, David C. Gemperline, Richard D. Vierstra

Biology Faculty Publications & Presentations

The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type …


Autophagic Turnover Of Inactive 26s Proteasomes In Yeast Is Directed By The Ubiquitin Receptor Cue5 And The Hsp42 Chaperone, Richard S. Marshall, Fionn Mcloughlin, Richard D. Vierstra Aug 2016

Autophagic Turnover Of Inactive 26s Proteasomes In Yeast Is Directed By The Ubiquitin Receptor Cue5 And The Hsp42 Chaperone, Richard S. Marshall, Fionn Mcloughlin, Richard D. Vierstra

Biology Faculty Publications & Presentations

Highlights

  • The yeast 26S proteasome is degraded by Atg8-mediated autophagy
  • Nitrogen starvation and inactivation stimulate proteaphagy via distinct pathways
  • Proteasome inhibition is accompanied by extensive ubiquitylation of the complex
  • Proteaphagy engages the Cue5 autophagy receptor and the Hsp42 chaperone

Summary

The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 …


A Parallel G Quadruplex-Binding Protein Regulates The Boundaries Of Dna Elimination Events Of Tetrahymena Thermophila, Christine M. Carle, Hani S. Zaher, Douglas L. Chalker Mar 2016

A Parallel G Quadruplex-Binding Protein Regulates The Boundaries Of Dna Elimination Events Of Tetrahymena Thermophila, Christine M. Carle, Hani S. Zaher, Douglas L. Chalker

Biology Faculty Publications & Presentations

Guanine (G)-rich DNA readily forms four-stranded quadruplexes in vitro, but evidence for their participation in genome regulation is limited. We have identified a quadruplex-binding protein, Lia3, that controls the boundaries of germline-limited, internal eliminated sequences (IESs) of Tetrahymena thermophila. Differentiation of this ciliate’s somatic genome requires excision of thousands of IESs, targeted for removal by small-RNA-directed heterochromatin formation. In cells lacking LIA3 (ΔLIA3), the excision of IESs bounded by specific G-rich polypurine tracts was impaired and imprecise, whereas the removal of IESs without such controlling sequences was unaffected. We found that oligonucleotides containing these polypurine tracts formed …


Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra Dec 2015

Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra

Biology Faculty Publications & Presentations

Chloroplasts depend on the nucleus for much of their proteome. Consequently, strong transcriptional coordination exists between the genomes, which is attuned to the developmental and physiological needs of the organelle. Recent studies highlight that the post-translational modifier ubiquitin adds another layer to plastid homeostasis and even helps eliminate damaged chloroplasts.


O6-Methylguanosine Leads To Position-Dependent Effects On Ribosome Speed And Fidelity, Benjamin H. Hudson, Hani S. Zaher Aug 2015

O6-Methylguanosine Leads To Position-Dependent Effects On Ribosome Speed And Fidelity, Benjamin H. Hudson, Hani S. Zaher

Biology Faculty Publications & Presentations

Nucleic acids are under constant assault from endogenous and environmental agents that alter their physical and chemical properties. O6-methylation of guanosine (m(6)G) is particularly notable for its high mutagenicity, pairing with T, during DNA replication. Yet, while m(6)G accumulates in both DNA and RNA, little is known about its effects on RNA. Here, we investigate the effects of m(6)G on the decoding process, using a reconstituted bacterial translation system. m(6)G at the first and third position of the codon decreases the accuracy of tRNA selection. The ribosome readily incorporates near-cognate aminoacyl-tRNAs (aa-tRNAs) by forming m(6)G-uridine codon-anticodon pairs. Surprisingly, the introduction …


The Fragile Fiber1 Kinesin Contributes To Cortical Microtubule-Mediated Trafficking Of Cell Wall Components, Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. Mcclosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, Ram Dixit Mar 2015

The Fragile Fiber1 Kinesin Contributes To Cortical Microtubule-Mediated Trafficking Of Cell Wall Components, Chuanmei Zhu, Anindya Ganguly, Tobias I. Baskin, Daniel D. Mcclosky, Charles T. Anderson, Cliff Foster, Kristoffer A. Meunier, Ruth Okamoto, Howard Berg, Ram Dixit

Biology Faculty Publications & Presentations

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 …


An Active Role For The Ribosome In Determining The Fate Of Oxidized Mrna, Carrie L. Simms, Benjamin H. Hudson, John W. Mosior, Ali S. Rangwala, Hani S. Zaher Nov 2014

An Active Role For The Ribosome In Determining The Fate Of Oxidized Mrna, Carrie L. Simms, Benjamin H. Hudson, John W. Mosior, Ali S. Rangwala, Hani S. Zaher

Biology Faculty Publications & Presentations

Chemical damage to RNA affects its functional properties and thus may pose a significant hurdle to the translational apparatus; however, the effects of damaged mRNA on the speed and accuracy of the decoding process and their interplay with quality-control processes are not known. Here, we systematically explore the effects of oxidative damage on the decoding process using a well-defined bacterial in vitro translation system. We find that the oxidative lesion 8-oxoguanosine (8-oxoG) reduces the rate of peptide-bond formation by more than three orders of magnitude independent of its position within the codon. Interestingly, 8-oxoG had little effect on the fidelity …


Ribosomes Left In The Dust: Diverse Strategies For Peptide-Mediated Translation Stalling, Benjamin H. Hudson, Hani S. Zaher Nov 2014

Ribosomes Left In The Dust: Diverse Strategies For Peptide-Mediated Translation Stalling, Benjamin H. Hudson, Hani S. Zaher

Biology Faculty Publications & Presentations

In two recent papers, Arenz et al. (2014a) and Bischoff et al. (2014) provide structural insights into drug-induced, peptide-mediated stalling of the ribosome.


Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit Dec 2013

Mechanisms For Regulation Of Plant Kinesins, Anindya Ganguly, Ram Dixit

Biology Faculty Publications & Presentations

Throughout the eukaryotic world, kinesins serve as molecular motors for the directional transport of cellular cargo along microtubule tracks. Plants contain a large number of kinesins that have conserved as well as specialized functions. These functions depend on mechanisms that regulate when, where and what kinesins transport. In this review, we highlight recent studies that have revealed conserved modes of regulation between plant kinesins and their non-photosynthetic counterparts. These findings lay the groundwork for understanding how plant kinesins are differentially engaged in various cellular processes that underlie plant growth and development.


Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit Nov 2013

Microtubule Severing At Crossover Sites By Katanin Generates Ordered Cortical Microtubule Arrays In Arabidopsis, Quan Zhang, Erica Fishel, Tyler Bertroche, Ram Dixit

Biology Faculty Publications & Presentations

Highlights

  • Severing primarily depolymerizes the overlying CMT at crossover sites
  • Severing probability increases nonlinearly with crossover time
  • Katanin localizes to crossover sites and is required for severing
  • Loss of katanin activity prevents the formation of coaligned CMT arrays

Summary
The noncentrosomal cortical microtubules (CMTs) of land plants form highly ordered parallel arrays that mediate cell morphogenesis by orienting cellulose deposition [1, 2 and 3]. Since new CMTs initiate from dispersed cortical sites at random orientations [4], parallel array organization is hypothesized to require selective pruning of CMTs that are not in the dominant orientation. Severing of CMTs at crossover sites …


Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell Aug 2013

Mscs-Like Mechanosensitive Channels In Plants And Microbes, Margaret E. Wilson, Grigory Maksaev, Elizabeth S. Haswell

Biology Faculty Publications & Presentations

The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. …


Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit Jul 2013

Role Of Nucleation In Cortical Microtubule Array Organization: Variations On A Theme, Erica A. Fishel, Ram Dixit

Biology Faculty Publications & Presentations

The interphase cortical microtubules (CMTs) of plant cells form strikingly ordered arrays in the absence of a dedicated microtubule-organizing center. Considerable research effort has focused on activities such as bundling and severing that occur after CMT nucleation and are thought to be important for generating and maintaining ordered arrays. In this review, we focus on how nucleation affects CMT array organization. The bulk of CMTs are initiated from γ-tubulin-containing nucleation complexes localized to the lateral walls of pre-existing CMTs. These CMTs grow either at an acute angle or parallel to the pre-existing CMT. Although the impact of microtubule-dependent nucleation is …


Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit Oct 2012

Functions Of The Arabidopsis Kinesin Superfamily Of Microtubule-Based Motor Proteins, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. …


Single Molecule Analysis Of The Arabidopsis Fra1 Kinesin Shows That It Is A Functional Motor Protein With Unusually High Processivity, Chuanmei Zhu, Ram Dixit Sep 2011

Single Molecule Analysis Of The Arabidopsis Fra1 Kinesin Shows That It Is A Functional Motor Protein With Unusually High Processivity, Chuanmei Zhu, Ram Dixit

Biology Faculty Publications & Presentations

The Arabidopsis FRA1 kinesin contributes to the organization of cellulose microfibrils through an unknown mechanism. The cortical localization of this kinesin during interphase raises the possibility that it transports cell wall-related cargoes along cortical microtubules that either directly or indirectly influence cellulose microfibril patterning. To determine whether FRA1 is an authentic motor protein, we combined bulk biochemical assays and single molecule fluorescence imaging to analyze the motor properties of recombinant, GFP-tagged FRA1 containing the motor and coiled-coil domains (designated as FRA1(707)–GFP). We found that FRA1(707)–GFP binds to microtubules in an ATP-dependent manner and that its ATPase activity is dramatically stimulated …


Sunday Driver/Jip3 Binds Kinesin Heavy Chain Directly And Enhances Its Motility, Faneng Sun, Chuanmei Zhu, Ram Dixit, Valeria Cavalli Jul 2011

Sunday Driver/Jip3 Binds Kinesin Heavy Chain Directly And Enhances Its Motility, Faneng Sun, Chuanmei Zhu, Ram Dixit, Valeria Cavalli

Biology Faculty Publications & Presentations

Neuronal development, function and repair critically depend on axonal transport of vesicles and protein complexes, which is mediated in part by the molecular motor kinesin‐1. Adaptor proteins recruit kinesin‐1 to vesicles via direct association with kinesin heavy chain (KHC), the force‐generating component, or via the accessory light chain (KLC). Binding of adaptors to the motor is believed to engage the motor for microtubule‐based transport. We report that the adaptor protein Sunday Driver (syd, also known as JIP3 or JSAP1) interacts directly with KHC, in addition to and independently of its known interaction with KLC. Using an in vitro motility assay, …