Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Alternative Nad(P)H Dehydrogenase And Alternative Oxidase: Proposed Physiological Roles In Animals, Allison Mcdonald, Dmytro V. Gospodaryov Mar 2019

Alternative Nad(P)H Dehydrogenase And Alternative Oxidase: Proposed Physiological Roles In Animals, Allison Mcdonald, Dmytro V. Gospodaryov

Biology Faculty Publications

The electron transport systems in mitochondria of many organisms contain alternative respiratory enzymes distinct from those of the canonical respiratory system depicted in textbooks. Two of these enzymes, the alternative NADH dehydrogenase and the alternative oxidase, were of interest to a limited circle of researchers until they were envisioned as gene therapy tools for mitochondrial disease treatment. Recently, these enzymes were discovered in several animals. Here, we analyse the functioning of alternative NADH dehydrogenases and oxidases in different organisms. We propose that both enzymes ensure bioenergetic and metabolic flexibility during environmental transitions or other conditions which may compromise the operation …


Functional Characterization Of O-Acetyltransferase Wssi: Role In Bacterial Cellulose Acetylation Of Achromobacter Insuavis And Pseudomonas Fluorescens, Alysha Burnett Jan 2019

Functional Characterization Of O-Acetyltransferase Wssi: Role In Bacterial Cellulose Acetylation Of Achromobacter Insuavis And Pseudomonas Fluorescens, Alysha Burnett

Theses and Dissertations (Comprehensive)

Cellulose biofilms consist of a community of bacterial cells encased in a self-produced matrix of polymers (e.g. exopolysaccharides, such as cellulose) that facilitate a firm adherence to surfaces. The acetylation (addition of an acetyl group on carbohydrates) is crucial in virulence; thereby in some cases allowing opportunistic bacteria to cause harmful diseases. Pertaining to this research, the wrinkly spreader (WS) genotype of Pseudomonas fluorescens colonizes the air-liquid interface on food, water sources and human tissue to form a robust biofilm with the ability to spread across surfaces. The composition of this biofilm largely consists of bacterial cellulose polymers …


Characterization Of Wssf; A Putative Acetyltransferase From Achromobacter Insuavis And Pseudomonas Fluorescens, Cody Reese Jan 2019

Characterization Of Wssf; A Putative Acetyltransferase From Achromobacter Insuavis And Pseudomonas Fluorescens, Cody Reese

Theses and Dissertations (Comprehensive)

Biofilms are a survival mechanism commonly employed by communities of bacteria for adherence and protection. Bacteria produce a matrix of polymers (e.g. exopolysaccharides, such as cellulose) that allow them to exert control on their local environment. In the case of cellulose biofilms, acetylation (addition of acetate on carbohydrates) is paramount for polymer integrity and in some cases virulence. For this research, the wrinkly spreader (WS) genotype of the emergent human pathogen Achromobacter insuavis facilitates infections of the eyes of contact lens wearers and the lungs of Cystic Fibrosis patients (CF). Chronic infections have created a growing concern for the protective …