Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares Jan 2018

Role Of Glycerol-3-Phosphate Permeases In Plant Defense, Juliana Moreira Soares

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a type of plant defense mechanism that is induced after a localized infection and confers broad-spectrum immunity against related or unrelated pathogens. During SAR, a number of chemical signals and proteins generated at the site of primary infection travel to the uninfected tissues and are thought to alert the distal sites against secondary infections. Glycerol-3-phosphate (G3P) is one of the chemical signals that play an important role in SAR. G3P is synthesized in the cytosol and chloroplasts via the enzymatic activities of G3P Dehydrogenase (G3Pdh) or Glycerol Kinase (GK). Interestingly, a mutation in three of …


Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan Jan 2014

Ether Bridge Formation And Chemical Diversification In Loline Alkaloid Biosynthesis, Juan Pan

Theses and Dissertations--Plant Pathology

Loline alkaloids, found in many grass-Epichloë symbiota, are toxic or feeding deterrent to invertebrates. The loline alkaloids all share a saturated pyrrolizidine ring with a 1-amine group and an ether bridge linking C2 and C7. The steps in biosynthesis of loline alkaloids are catalyzed by enzymes encoded by a gene cluster, designated LOL, in the Epichloë genome. This dissertation addresses the enzymatic, genetic and evolutionary basis for diversification of these alkaloids, focusing on ether bridge formation and the subsequent modifications of the 1-amine to form different loline alkaloids.

Through gene complementation of a natural lolO mutant and comparison …