Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

Purdue University

Theses/Dissertations

2016

Pure sciences

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry

Functional And Structural Characterization Of The Mevalonate Diphosphate Decarboxylase And The Isopentenyl Diphosphate Isomerase From Enterococcus Faecalis, Chun-Liang Chen Dec 2016

Functional And Structural Characterization Of The Mevalonate Diphosphate Decarboxylase And The Isopentenyl Diphosphate Isomerase From Enterococcus Faecalis, Chun-Liang Chen

Open Access Dissertations

Enterococcus faecalis causes a diverse range of nosocomial infections (in wounds, the gastrointestinal tract, the blood stream and the endocardium), and multidrug-resistant strains have become a serious issue across countries. Vancomycin, a FDA-approved drug for the disruption of the bacterial cell wall biosynthesis, has been utilized to treat infectious diseases caused by Enterococci; however, the prevalence of vancomycin-resistant enterococci (VRE) threatens communities all over the world. We aim at developing novel therapeutic strategies to control bacterial growth of Enterococci, and we focus on targeting two essential enzymes involved in poly-isoprenoid biosynthesis in Enterococcus faecalis; one is the mevalonate diphosphate decarboxylase …


The Role Of Hif1alpha And Hif2alpha In Muscle Development And Satellite Cell Function, Shiqi Yang Dec 2016

The Role Of Hif1alpha And Hif2alpha In Muscle Development And Satellite Cell Function, Shiqi Yang

Open Access Theses

Hypoxia inducible factors (HIFs) are central mediators of cellular responses to fluctuations of oxygen, an environmental regulator of stem cell activity. Muscle satellite cells are myogenic stem cells whose quiescence, activation, self-renewal and differentiation are influenced by microenvironment oxygen levels. However, the in vivo roles of HIFs in quiescent satellite cells and activated satellite cells (myoblasts) are poorly understood. Expression analyses indicate that HIF1α and HIF2α are preferentially expressed in pre- and post-differentiation myoblasts, respectively. Interestingly, double knockout of HIF1α and HIF2α (HIF1α/2α dKO) in embryonic myoblasts results in apparently normal muscle development and growth. However, HIF1α/2α dKO in postnatal …