Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Biochemistry

An In Silico Approach To Investigate The Structural And Biochemical Basis Of The Rna Binding Functions Of Nucleolin, Avdar San Feb 2022

An In Silico Approach To Investigate The Structural And Biochemical Basis Of The Rna Binding Functions Of Nucleolin, Avdar San

Dissertations, Theses, and Capstone Projects

Nucleolin (NCL) is a stress responsive multifunctional nucleolar protein and accounts for 10% of the total nucleolar protein content. NCL belongs to the class of RNA binding proteins (RBPs) that regulate many important cellular processes through their interactions with different RNA molecules. The dysregulation of RBPs and the RNA metabolism pathways they intersect is a known driver of tumorigenesis. NCL regulates ribosome biogenesis, chromatin remodeling, microRNA processing, and gene expression on multiple levels. The RNA-protein interactions of NCL are primarily driven by its four RNA binding domains (RBDs). NCL is known to interact with a growing list of primary-miRNA (pri-miRNA) …


Don't Sell Them Short, There's More To Bacterial Natural Products Than Antibiotics, Alison Clare Domzalski Sep 2021

Don't Sell Them Short, There's More To Bacterial Natural Products Than Antibiotics, Alison Clare Domzalski

Dissertations, Theses, and Capstone Projects

Recent genomic studies of microbiomes have revealed an overwhelming number of biosynthetic genes of unknown function. Most of these “cryptic” biosynthetic genes are not expressed in laboratory monocultures of individual microbes. Thus, there remains tremendous untapped potential for natural products discovery. Here we employ mixed microbial culture (MMC) as a simple yet powerful approach to awaken cryptic biosynthetic gene clusters. Our preliminary studies demonstrated that arrays of metabolites could be induced in MMCs upon environmental cues, such as surface adhesion. Using this system, we have screened, identified, and isolated bioactive bacterial metabolites, which were characterized structurally and biologically. Of the …


The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber Sep 2021

The Structural And Functional Role Of Photosensing In Rgs-Lov Proteins, Zaynab Jaber

Dissertations, Theses, and Capstone Projects

Light provides organisms with energy and spatiotemporal information. To survive and adapt, organisms have developed the ability to sense light to drive biochemical effects that underlie vision, entrainment of circadian rhythm, stress response, virulence, and many other important molecularly driven responses. Blue-light sensing Light-Oxygen-Voltage (LOV) domains are ubiquitous across multiple kingdoms of life and modulate various physiological events via diverse effector domains. Using a small molecule flavin chromophore, the LOV domain undergoes light-dependent structural changes leading to activation or repression of these catalytic and non-catalytic effectors. In silico analyses of high-throughput genomic sequencing data has led to the marked expansion …


Machine Learning Applications For Drug Repurposing, Hansaim Lim Sep 2020

Machine Learning Applications For Drug Repurposing, Hansaim Lim

Dissertations, Theses, and Capstone Projects

The cost of bringing a drug to market is astounding and the failure rate is intimidating. Drug discovery has been of limited success under the conventional reductionist model of one-drug-one-gene-one-disease paradigm, where a single disease-associated gene is identified and a molecular binder to the specific target is subsequently designed. Under the simplistic paradigm of drug discovery, a drug molecule is assumed to interact only with the intended on-target. However, small molecular drugs often interact with multiple targets, and those off-target interactions are not considered under the conventional paradigm. As a result, drug-induced side effects and adverse reactions are often neglected …


Development Of Ligand Guided Selection (Ligs) To Identify Specific Dna Aptamers Against Cell Surface Proteins, Hasan Ekrem Zumrut Jun 2020

Development Of Ligand Guided Selection (Ligs) To Identify Specific Dna Aptamers Against Cell Surface Proteins, Hasan Ekrem Zumrut

Dissertations, Theses, and Capstone Projects

Oligonucleotide aptamers (nucleic acid-based affinity reagents) are an emerging class of synthetic molecules that display high affinity and specificity towards their targets. Aptamer molecules for a target of interest are obtained using a combinatorial chemistry-based method termed systematic evolution of ligands by exponential enrichment (SELEX). SELEX is an in vitro selection process in which a random oligonucleotide library is subjected to repeated cycles of target incubation, separation, and amplification until target-specific evolved sequences become prevalent in the library. Typically, SELEX is used against target molecules such as small molecules and proteins, in their purified state. However, aptamers selected against purified …


Binding Of Maize Necrotic Streak Virus (Mnesv) 3’ I-Shaped Structure (3’ Iss) To Eukaryotic Translation Factors (Eifs) And Implication In Eif4f Mediated Translation Initiation, Qiao Liu May 2018

Binding Of Maize Necrotic Streak Virus (Mnesv) 3’ I-Shaped Structure (3’ Iss) To Eukaryotic Translation Factors (Eifs) And Implication In Eif4f Mediated Translation Initiation, Qiao Liu

Dissertations, Theses, and Capstone Projects

5' m7GpppN cap and the 3' poly adenosine (A) tail of eukaryotic mRNAs are key elements for recruiting translation initiation machinery in canonical translation initiation. Unlike host mRNAs, many viruses lack these elements and yet they are translated efficiently. Plant viruses, in particular, have complex structures within their untranslated regions (UTR) that allow them to bypass some cellular translation control steps. In Maize necrotic streak virus (MNeSV) 3' UTR, an I-Shaped RNA Structure (ISS) has been reported to mediate the virus translation initiation progress. 3’ ISS binding with eIF4F has been shown to facilitate translation. 5’ -3’ kissing …


Evidence For Organelle-Like Extracellular Vesicles From A Parasite Of Drosophila And Their Function In Suppressing Host Immunity, Mary Heavner May 2018

Evidence For Organelle-Like Extracellular Vesicles From A Parasite Of Drosophila And Their Function In Suppressing Host Immunity, Mary Heavner

Dissertations, Theses, and Capstone Projects

Parasitic wasps act as keystone species in natural ecosystems. Adept at suppressing immunity of their insect hosts, these natural enemies of insect pests are used for biocontrol in many parts of the world. Female parasitic wasps of the closely-related species Leptopilina heterotoma (Lh), a generalist of many Drosophilia flies, and Leptopilina boulardi (Lb), a specialist on flies of the melanogaster subgroup, produce venom and virus-like particles (VLPs) in their long gland-reservoir complexes, a secretory organ connected to ovipositors. Venom and VLPs are deposited, along with wasp eggs, into the body of the wasp’s larval fly host …


Chloride And Proton Binding In The E. Coli 2cl¯:1h+ Clc Exchanger, Catherine Chenal Feb 2017

Chloride And Proton Binding In The E. Coli 2cl¯:1h+ Clc Exchanger, Catherine Chenal

Dissertations, Theses, and Capstone Projects

The CLC family of membrane proteins is a ubiquitously expressed class of proton and usually voltage-activated chloride transporters involved in a myriad of physiological functions. Crystallographic structures identify up to three chloride binding sites: external, central and intracellular located in the inner half of the trans-membrane domain. The CLC proteins, except for the kidney isoforms, are gated by the extracellular side-facing gating Glutamate (Ex, E148 in CLC-ec1, the E. coli exchanger), which is thought to undergo a conformational change upon protonation.

To sort out how the thermodynamic paths to H+ coupled Cl¯ binding and conformational change in CLC-ec1 at the …


Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang Sep 2016

Molecular Analysis Of Ftsz-Ring Assembly In E. Coli Cytokinesis, Kuo-Hsiang Huang

Dissertations, Theses, and Capstone Projects

An essential first step in bacterial division is the assembly of a cytokinetic ring (Z-ring) formed by the tubulin-like FtsZ at midcell. The highly conserved core domain of FtsZ has been reported to mediate assembly of FtsZ polymers in vivo and in vitro. Species-specific differences in the FtsZ C-terminal domain such as the FtsZ CTV region and interactions with several modulatory proteins such as ZapC and ZapD, restricted to certain bacterial classes, also serve as key determinants of FtsZ protofilament bundling. Here, we characterize (i) the roles of the FtsZ CTV region in mediating both longitudinal and lateral interactions …


Characterizing Migratory Signaling Pathways Of Transplantable Retinal Progenitor Cells And Photoreceptor Precursor Cells Toward Restoration Of Degenerative Retina ' A Systems Biology Approach, Uchenna John Unachukwu Sep 2015

Characterizing Migratory Signaling Pathways Of Transplantable Retinal Progenitor Cells And Photoreceptor Precursor Cells Toward Restoration Of Degenerative Retina ' A Systems Biology Approach, Uchenna John Unachukwu

Dissertations, Theses, and Capstone Projects

A common feature of several heterogeneous diseases that result in retinal degeneration (RD) is photoreceptor loss, leading to an irreversible decline in visual function [15-17]. There are no cell replacement treatments available for RD diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). Although many RD cases are of a genetic origin, a promising strategy to treat diseased phenotypes is by replacing lost photoreceptor cells, for synaptic integration and restoration of visual function. To advance photoreceptor-replacement strategies as a practical therapy, in light of highly restricted integration rates reported across studies, this body of research focused on defining …