Open Access. Powered by Scholars. Published by Universities.®

Biochemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry

Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan Mar 2022

Deciphering Protein Higher-Order Structure And Interactions Via Diethylpyrocarbonate Labeling-Mass Spectrometry, Xiao Pan

Doctoral Dissertations

The study of protein higher-order structures is vital because it is closely related to the investigation of protein folding, aggregation, interaction and protein therapeutics. Consequently, numerous biochemical and biophysical tools have been developed to study protein higher-order structures in many different situations. The combination of covalent labeling (CL) and mass spectrometry (MS) has emerged as a powerful tool for studying protein structures and offers many advantages over other traditional techniques, such as better structural coverage, high throughput, high sensitivity, and the ability to study proteins in mixtures. This dissertation focuses on diethylpyrocarbonate (DEPC) as an effective CL reagent that can …


Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden Oct 2021

Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden

Doctoral Dissertations

Amyloid-forming proteins are implicated in a number of debilitating diseases. While many amyloid-forming proteins are well studied, the early stages of amyloidosis are still not well understood on a molecular level. Covalent labeling, combined with mass spectrometry (CL-MS), is uniquely well suited to provide molecular-level insight into the factors governing the early stages of amyloidosis. This dissertation leverages CL-MS techniques to examine the early stages of β-2-microglobulin (β2m) amyloidosis. β2m is the protein that forms amyloids in the condition known as dialysis-related amyloidosis. An automated CL-MS technique that uses dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide as a labeling reagent was developed and used …


Intrinsic Buffer Hydroxyl Radical Dosimetry For Hydroxyl Radical Protein Footprinting, Addison Roush May 2020

Intrinsic Buffer Hydroxyl Radical Dosimetry For Hydroxyl Radical Protein Footprinting, Addison Roush

Honors Theses

Hydroxyl radical protein footprinting (HRPF) coupled to mass spectrometry is a powerful technique for the analysis of protein topography as it generates covalent mass labels that can survive downstream sample handling, and it is sensitive to the solvent accessibility of amino acid sidechains. Of the multiple platforms for HRPF, fast photochemical oxidation of proteins (FPOP) utilizes a pulsed 248 nm KrF excimer laser to label proteins by photolyzing hydrogen peroxide. FPOP is the most widely used HRPF platform because it labels proteins faster than unfolding can occur. Variations in FPOP sample conditions make it difficult to compare results between experiments …