Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Ubiquitin

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 46

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Two Dot1 Enzymes Cooperatively Mediate Efficient Ubiquitin-Independent Histone H3 Lysine 76 Tri-Methylation In Kinetoplastids, Victoria Frisbie, Hideharu Hashimoto, Yixuan Xie, Francisca De Luna Vitorino, Josue Baeza, Tam Nguyen, Zhangerjiao Yuan, Janna Kiselar, Benjamin Garcia, Erik Debler Mar 2024

Two Dot1 Enzymes Cooperatively Mediate Efficient Ubiquitin-Independent Histone H3 Lysine 76 Tri-Methylation In Kinetoplastids, Victoria Frisbie, Hideharu Hashimoto, Yixuan Xie, Francisca De Luna Vitorino, Josue Baeza, Tam Nguyen, Zhangerjiao Yuan, Janna Kiselar, Benjamin Garcia, Erik Debler

Department of Biochemistry and Molecular Biology Faculty Papers

In higher eukaryotes, a single DOT1 histone H3 lysine 79 (H3K79) methyltransferase processively produces H3K79me2/me3 through histone H2B mono-ubiquitin interaction, while the kinetoplastid Trypanosoma brucei di-methyltransferase DOT1A and tri-methyltransferase DOT1B efficiently methylate the homologous H3K76 without H2B mono-ubiquitination. Based on structural and biochemical analyses of DOT1A, we identify key residues in the methyltransferase motifs VI and X for efficient ubiquitin-independent H3K76 methylation in kinetoplastids. Substitution of a basic to an acidic residue within motif VI (Gx6K) is essential to stabilize the DOT1A enzyme-substrate complex, while substitution of the motif X sequence VYGE by CAKS renders a rigid active-site …


Emerging Roles Of Cullin-Ring Ubiquitin Ligases In Cardiac Development, Josue Zambrano-Carrasco, Jianqiu Zou, Wenjuan Wang, Xinghui Sun, Jie Li, Huabo Su Jan 2024

Emerging Roles Of Cullin-Ring Ubiquitin Ligases In Cardiac Development, Josue Zambrano-Carrasco, Jianqiu Zou, Wenjuan Wang, Xinghui Sun, Jie Li, Huabo Su

Department of Biochemistry: Faculty Publications

Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, …


The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper May 2023

The Involvement Of Ubiquitin In Med13 Cyclin C Degradation Following Cellular Stress, Ayesha Gurnani, Brittany Friedson, Katrina Cooper

Rowan-Virtua Research Day

The Cdk8 Kinase Module is a dissociable regulator of cellular stress response genes, with degradation of its components Med13 and cyclin C eventually determining cell fate decisions such as engaging cell survival or cell death mechanisms. We aimed to explore the roles of ubiquitin in degradation of the Cdk8 Kinase Module following nitrogen starvation, with respect to the potential involvement of deubiquitinating enzyme Doa4, lysine linkage at position K63, and E2 ubiquitin conjugating enzymes Ubc4 and Ubc5. We utilized Western blot analysis to observe nitrogen starvation-induced degradation of Med13-HA in wild-type, doa4 mutant, and K63R yeast strains; degradation of cyclin …


Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty Jan 2023

Novel Mechanistic Insight Into Ciliary Regulation: Old Pathways Yield New Mechanisms, Larissa L. Dougherty

Dartmouth College Ph.D Dissertations

Cilia are structures present on most eukaryotic cells which provide important signaling and motile components to cells from early development to fully differentiated and matured cells. Regulation of these structures is critical to proper functioning of the cell and is known to be tied to the cell cycle. Preparation for ciliary assembly following cell cycle exit and ciliary disassembly following cell cycle reentry requires components throughout the cell body and within the cilium to facilitate this process. Here I identify how the cell adapts to ensure modifications to cilia occur for assembly or disassembly using the model organism Chlamydomonas reinhardtii. …


A Tale Of Two-Hybrids: Investigating The Interactomes Of Cullin-Associated Proteins, Elyse Reitter Feb 2022

A Tale Of Two-Hybrids: Investigating The Interactomes Of Cullin-Associated Proteins, Elyse Reitter

Dissertations and Theses

Cul3 is the major component of an E3 ligase in human cells. Cul3 was initially identified in the Singer lab as a protein that binds and degrades cyclin E, and subsequent studies have shown it to be part of a complex that is involved in a multitude of biological functions. The nature of this complex, its constituents, its regulation, and its dynamics is just beginning to be understood. The research presented here utilizes a series of two hybrid screens to identify families of interactomes with Cul3 at the center. This information will complement other work in the lab in which …


Kinetic And Structural Influences Of Acetylation On Ubiquitin Processing, Rachel E. Lacoursiere Feb 2022

Kinetic And Structural Influences Of Acetylation On Ubiquitin Processing, Rachel E. Lacoursiere

Electronic Thesis and Dissertation Repository

Ubiquitin (Ub) is a small modifying protein abundant in cells where it serves numerous regulatory roles including immune signaling, transcriptional regulation, and proteostasis. To exert its function, Ub covalently interacts with a series of E1, E2, and E3 enzymes before final substrate modification. Dysregulation of Ub signaling has implications in human maladies such as cancer, autoimmune disorders, and neurodegenerative diseases. In these diseases and associated in cellulo models, modifications to Ub serve an additional role in Ub regulation. Post-translational modifications like acetylation or phosphorylation modulate protein-protein interactions and Ub signaling. To understand how acetylation of Ub alters the central E2 …


Here, There, And Everywhere: Probing Ubiquitin-Cavitand Binding Via 15n-1h Hsqc, Julia Didziulis Jan 2022

Here, There, And Everywhere: Probing Ubiquitin-Cavitand Binding Via 15n-1h Hsqc, Julia Didziulis

Scripps Senior Theses

Ubiquitination and other post-translational modifications play a major role in the proliferation of many neurodegenerative diseases, developmental disorders, and cancers, and as such are subjects of recently increased biochemical interest. Expanding upon such research, this study confirmed a robust method of ubiquitin expression and purification, then used 15N-1H HSQC to analyze ubiquitin samples containing varying concentrations of a deep cavitand with affinity for lysine and arginine side chains. In the pure ubiquitin spectrum, arginine side chain chemical shifts were detected in the nitrogen 80-85 ppm range and lysine side chain signals were undetected. However, upon introduction of the cavitand, collection …


Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry Dec 2021

Usp11 And Usp7 Deubiquitinases Regulate Sprtn Auto-Proteolysis And Sprtn-Mediated Dna-Protein Crosslink Repair, Megan C. Perry

Theses & Dissertations

DNA repair pathways that recognize and remove damaged DNA are vital for maintenance of genomic stability and prevention of tumorigenesis. Conversely, these pathways may be robust in tumor cells, thus diminishing the anti-cancer potential of available therapies. DNA-protein crosslinks (DPCs) are particularly deleterious DNA adducts that occur when proteins become irreversibly covalently bound to the DNA. DPCs represent a diverse group of lesions, as any protein can be crosslinked to the DNA duplex by non-specific crosslinking agents like reactive aldehydes and radiation. Additionally, functional DNA-binding proteins such as topoisomerases may become permanently crosslinked to DNA ends by abortive enzymatic processes …


Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola Sep 2021

Mechanisms Of Substrate Recognition By The Cul3-Based E3 Ligase, Katia Graziella De Oliveira Rebola

Dissertations and Theses

Cul3-based E3 ligase is responsible for regulating a variety of cellular pathways, many of which are known to have profound effects on the proper function of multicellular organisms. Although progress over the past years has been truly impressive, our understanding of the mechanisms of E2 recruitment and selection by the BCR complex and all the roles that Cul3 plays on kidneys remains in its infancy. To explore these aspects, this dissertation aims to analyze the Cul3 complex using two different approaches: (1) We used the powerful tool of chimeric analysis to map the essential domain binding characteristics of Cul3 taking …


New Perspectives On Phosphorylation State In The Parkin Ubiquitination Cascade, Karen Dunkerley Jun 2021

New Perspectives On Phosphorylation State In The Parkin Ubiquitination Cascade, Karen Dunkerley

Electronic Thesis and Dissertation Repository

The RBR E3 ligase parkin is recruited to the outer mitochondrial membrane (OMM) during oxidative stress where it becomes activated and ubiquitinates numerous proteins. Parkin activation involves binding of a phosphorylated ubiquitin (pUb), followed by phosphorylation of parkin itself, both mediated by the OMM kinase, PINK1. However, targeted mitochondrial proteins have little structural or sequence similarity, with the commonality between substrates being proximity to the OMM. The objective of this thesis was to identify the molecular consequences of parkin phosphorylation, interaction with pUb and how this promotes ubiquitination activity of known Ub-acceptor proteins and parkin itself.

The three-dimensional structure of …


Investigation Of Potentially Catalytic Residues Of Uba5 Through Mutagenesis, Purification, And Structural Characterization, Grant Bradley May 2020

Investigation Of Potentially Catalytic Residues Of Uba5 Through Mutagenesis, Purification, And Structural Characterization, Grant Bradley

Senior Honors Projects, 2020-current

Ubiquitin-fold modifier 1 (Ufm1) is a member of the Ubiquitin (Ub) family of proteins whose primary function is degradation of proteins through a sequential mechanism of chemical reactions. Though Ufm1’s specific roles are largely unknown, this family of proteins has shown to play a part in a wide variety of processes, including regulation of the cell cycle1, secretory functions of cells2,3, and blood clotting4. Ufm1’s mechanism of action proceeds with the aid of three enzymes: an E1, E2, and E3. Uba5 is the E1 activating enzyme that is specific to Ufm1, and its mechanism of …


Structural Study Of The Complex Between Dna Polymerase Iota And Ub-Pcna, Harrison Taylor Feb 2020

Structural Study Of The Complex Between Dna Polymerase Iota And Ub-Pcna, Harrison Taylor

Electronic Thesis and Dissertation Repository

DNA polymerase iota (polι) is a member of the Y-family, polymerases which are key components in translesion synthesis (TLS). As part of the DNA damage response, TLS allows cells to bypass damaged template DNA. Each member of the Y-family is capable of accurately replicating across from certain lesions. All Y-family polymerases are recruited by ubiquitination of the DNA sliding clamp, PCNA, by direct interaction with PCNA and ubiquitin. The mechanism of polymerase choice is not well understood, nor are the interactions between Ub-PCNA and the TLS polymerases. We studied the structure of the complex between the interacting region of polι …


Uncovering New Mechanisms Of Cdc34 And Cullin-Ring Activity, Spencer Hill Dec 2019

Uncovering New Mechanisms Of Cdc34 And Cullin-Ring Activity, Spencer Hill

UNLV Theses, Dissertations, Professional Papers, and Capstones

Ubiquitylation is a cellular regulatory system found in all eukaryotic cells, which has managed to find a role in most pathways imaginable. The system works fundamentally through the ligation of a small protein known as ubiquitin onto a substrate. Depending on the context of the ubiquitin ligation, the substrate can be directed towards a number of cellular fates, the best-studied being degradation of the substrate. While originally thought of as a signal for cellular disposal units to degrade aberrant proteins, we now know that ubiquitin plays a highly nuanced role in cellular epistasis, controlling everything from the cell cycle to …


The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang Aug 2019

The Gsk-3Β-Fbxl21 Axis Regulates Tcap Via Ubiquitin-Mediated Proteasomal Pathway In The Cytoplasm, Jiah Yang

Dissertations & Theses (Open Access)

Protein turnover is one of the most essential mechanisms controlling circadian rhythms. F-Box and Leucine Rich Repeat Protein21 (FBXL21) is a circadian E3 ligase which shows oscillatory mRNA transcripts and protein levels. It was previously found to perform subcellular compartment-specific E3 ligase activities targeting the core clock proteins CRYPTOCHROME(CRY)1/2. Here we identified a new sarcomeric target substrate, Telethonin(TCAP), which also shows circadian oscillation in its mRNA transcript and protein expression and, importantly, interaction with FBXL21 in an anti-phasic manner. Via computational and pharmacological tests, we identified Glycogen Synthase Kinase-3β(GSK-3β) as a regulator of FBXL21. Biochemical and molecular characterizations demonstrated that …


Cullin-3 Dependent Deregulation Of Actn1 Represents A New Pathogenic Mechanism In Nemaline Myopathy, Jordan Blondelle, Kavya Tallapaka, Jane T. Seto, Majid Ghassemian, Madison Clark, Jenni M. Laitila, Adam Bournazos, Jeffrey Singer, Stephan Lange Jan 2019

Cullin-3 Dependent Deregulation Of Actn1 Represents A New Pathogenic Mechanism In Nemaline Myopathy, Jordan Blondelle, Kavya Tallapaka, Jane T. Seto, Majid Ghassemian, Madison Clark, Jenni M. Laitila, Adam Bournazos, Jeffrey Singer, Stephan Lange

Biology Faculty Publications and Presentations

Nemaline myopathy is a congenital neuromuscular disorder characterized by muscle weakness, fiber atrophy, and presence of nemaline bodies within myofibers. However, understanding of the underlying pathomechanisms is lacking. Recently, mutations in KBTBD13, KLHL40, and KLHL41, three substrate adaptors for the E3 ubiquitin ligase Cullin-3, have been associated with early-onset nemaline myopathies. We hypothesized that deregulation of Cullin-3 and its muscle protein substrates may be responsible for disease development. Using Cullin-3–knockout mice, we identified accumulation of non-muscle α-actinins (ACTN1 and ACTN4) in muscles of these mice, which we also observed in patients with mutations in KBTBD13. Our …


Development Of Endogenous Tagging Plasmids For Characterization Of Protein Interactions, Localization, And Post-Translational Modifications Of Tetrahymena Thermophila Rad23, Evan Andrew Wilson May 2018

Development Of Endogenous Tagging Plasmids For Characterization Of Protein Interactions, Localization, And Post-Translational Modifications Of Tetrahymena Thermophila Rad23, Evan Andrew Wilson

MSU Graduate Theses

Rad23 is a protein involved in both nucleotide excision repair (NER) and proteasome-mediated degradation, and has been suggested to facilitate interactions between these two pathways. The model organism Tetrahymena thermophila, which has a transcriptionally silent micronucleus, provides a useful platform for studying the role of Rad23 in global genome NER (GG-NER). However, the ectopic expression systems used thus far in T. thermophila to study Rad23 are repressed by UV light and do not account for the background expression of endogenous RAD23; these phenomena prevent insightful gains to the true dynamics of Rad23. In this thesis, endogenous tagging …


Proteasome Storage Granules Protect Proteasomes From Autophagic Degradation Upon Carbon Starvation, Richard S. Marshall, Richard D. Vierstra Apr 2018

Proteasome Storage Granules Protect Proteasomes From Autophagic Degradation Upon Carbon Starvation, Richard S. Marshall, Richard D. Vierstra

Biology Faculty Publications & Presentations

26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required for …


Role Of The Snf2 Homolog, Irc20, In Yeast Genome Maintenance, Deena Mohamed Galal Eldin Ahmed Apr 2018

Role Of The Snf2 Homolog, Irc20, In Yeast Genome Maintenance, Deena Mohamed Galal Eldin Ahmed

Theses

In eukaryotes, DNA is wrapped around histone proteins forming a highly compact structure, the chromatin. All DNA-based processes must occur within the complex organization of the chromatin, and this requires modulation of its structure when needed. This is accomplished by covalent histone modifications that alter histone-DNA contacts, as well as through the actions of ATP-dependent chromatin remodelers. These multi-subunit complexes play major roles in transcription regulation, replication and repairing DNA damage. This thesis aims to characterize a poorly studied member of the SWI/SNF family of ATPases/helicases, Irc20, from Saccharomyces cerevisiae. Previously, Irc20 has been shown to be involved in …


Determination Of Amino Acids Involved In Specificity And Activity Of Chladub2, Trent S. Arbough, John M. Hausman, Chittaranjan Das Aug 2017

Determination Of Amino Acids Involved In Specificity And Activity Of Chladub2, Trent S. Arbough, John M. Hausman, Chittaranjan Das

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chlamydia trachomatis is a pathogen which infects humans as a sexually transmitted disease or through ocular infection, causing ocular trachoma. Ocular trachoma is the leading cause of non-congenital blindness in developing countries. The bacteria employs the deubiquitinating enzyme ChlaDUB2 to remove ubiquitin from its inclusion membrane in order to avoid lysosomal degradation. Key amino acids involved in ubiquitin recognition and cleavage were mutated in order to probe substrate specificity and catalytic activity of ChlaDUB2. Mutants were used in fluorometry assays in order to determine how the mutations affect the ability of ChlaDUB2 to release the amino methyl coumarin (AMC) group …


Defining The Destruction Box: Understanding How The Apc Recognizes Its Substrates, Hana Maldivita Tambrin, Mark C. Hall Aug 2017

Defining The Destruction Box: Understanding How The Apc Recognizes Its Substrates, Hana Maldivita Tambrin, Mark C. Hall

The Summer Undergraduate Research Fellowship (SURF) Symposium

Cell division is the process by which mother cells give rise to two genetically identical daughter cells. All cells have protein networks to ensure that cell division is completed correctly because mistakes during cell division may cause diseases. The Anaphase-promoting complex (APC) is an important regulatory enzyme that ensures successful completion of mitosis. It acts by removing inhibitors of chromosomal segregation and cytokinesis, as well as other important cell division regulators. Existing chemotherapies, like taxol, act by indirectly inhibiting APC function. This makes APC a potential target for new cancer chemotherapies. However, designing APC inhibitors is challenging because how APC …


Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai May 2017

Mechanisms Of G Protein Regulation By Rgs Proteins And Small Molecule Inhibitors, Stanley Michinobu Kanai

Arts & Sciences Electronic Theses and Dissertations

G protein coupled receptors transduce diverse extracellular signals like hormones, neurotransmitters, and photons to specific cellular responses through heterotrimeric G proteins. G proteins activate numerous effectors and signal transduction pathways, and therefore the regulation of G proteins is crucial for faithful propagation of specific cellular and physiological responses. A better understanding of the mechanisms that regulate G proteins should provide new insight into signaling pathways that govern healthy and disease states, and also provide opportunities for discovery of novel therapeutic targets.Regulator of G protein signaling (RGS) proteins are crucial regulators of G proteins, for they control amplitude and duration of …


Purification Of 26s Proteasomes And Their Subcomplexes From Plants, Richard S. Marshall, David C. Gemperline, Richard D. Vierstra Oct 2016

Purification Of 26s Proteasomes And Their Subcomplexes From Plants, Richard S. Marshall, David C. Gemperline, Richard D. Vierstra

Biology Faculty Publications & Presentations

The 26S proteasome is a highly dynamic, multisubunit, ATP-dependent protease that plays a central role in cellular housekeeping and many aspects of plant growth and development by degrading aberrant polypeptides and key cellular regulators that are first modified by ubiquitin. Although the 26S proteasome was originally enriched from plants over 30 years ago, only recently have significant advances been made in our ability to isolate and study the plant particle. Here, we describe two robust methods for purifying the 26S proteasome and its subcomplexes from Arabidopsis thaliana; one that involves conventional chromatography techniques to isolate the complex from wild-type …


Modulating Parkin E3 Ubiquitin Ligase Activity Using Phospho-Ubiquitin Variants, Susanna George Aug 2016

Modulating Parkin E3 Ubiquitin Ligase Activity Using Phospho-Ubiquitin Variants, Susanna George

Electronic Thesis and Dissertation Repository

Parkin is a Parkinson’s disease-linked E3 ubiquitin (Ub) ligase that promotes mitophagy by ubiquitination of mitochondrial outer membrane proteins. Phosphorylation of Ub at Ser65 by the PTEN-induced putative kinase 1 activates parkin. The role of other Ub phosphorylation sites and the associated kinases remain unknown. We optimized genetic code expansion to produce pure site-specfically phosphorylated Ub (pUb) variants (pUbS7, pUbS12, pUbS20, pUbS65) and investigated their activity in a key neurodegenerative pathway. Purification of pUbS7 revealed a +3 frameshifted protein (Ub ∆7) that was successfully purified away from the pUb. Parkin was …


Autophagic Turnover Of Inactive 26s Proteasomes In Yeast Is Directed By The Ubiquitin Receptor Cue5 And The Hsp42 Chaperone, Richard S. Marshall, Fionn Mcloughlin, Richard D. Vierstra Aug 2016

Autophagic Turnover Of Inactive 26s Proteasomes In Yeast Is Directed By The Ubiquitin Receptor Cue5 And The Hsp42 Chaperone, Richard S. Marshall, Fionn Mcloughlin, Richard D. Vierstra

Biology Faculty Publications & Presentations

Highlights

  • The yeast 26S proteasome is degraded by Atg8-mediated autophagy
  • Nitrogen starvation and inactivation stimulate proteaphagy via distinct pathways
  • Proteasome inhibition is accompanied by extensive ubiquitylation of the complex
  • Proteaphagy engages the Cue5 autophagy receptor and the Hsp42 chaperone

Summary

The autophagic clearance of 26S proteasomes (proteaphagy) is an important homeostatic mechanism within the ubiquitin system that modulates proteolytic capacity and eliminates damaged particles. Here, we define two proteaphagy routes in yeast that respond to either nitrogen starvation or particle inactivation. Whereas the core autophagic machineries required for Atg8 lipidation and vesiculation are essential for both routes, the upstream Atg1 …


The San1 Ubiquitin Ligase Functions Preferentially With Ubiquitin-Conjugating Enzyme Ubc1 During Protein Quality Control, Rebeca Lea Ibarra Aug 2016

The San1 Ubiquitin Ligase Functions Preferentially With Ubiquitin-Conjugating Enzyme Ubc1 During Protein Quality Control, Rebeca Lea Ibarra

UNLV Theses, Dissertations, Professional Papers, and Capstones

Protein quality control (PQC) is a critical process wherein misfolded or damaged proteins are cleared from the cell to maintain protein homeostasis. In eukaryotic cells, the removal of misfolded proteins is primarily accomplished by the ubiquitin-proteasome system (UPS). In the UPS, ubiquitin-conjugating enzymes and ubiquitin ligases append poly-ubiquitin chains onto misfolded protein substrates signaling for their degradation. The kinetics of protein ubiquitylation are paramount since a balance must be achieved between the rapid removal of misfolded proteins versus providing sufficient time for protein chaperones to attempt refolding. To uncover the molecular basis for how PQC substrate ubiquitylation rates are controlled, …


In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard May 2016

In Vitro Investigation Of The Effect Of Exogenous Ubiquitin On Processes Associated With Atherosclerosis, Chase W. Mussard

Undergraduate Honors Theses

Atherosclerosis, characterized by the build-up of cholesterol, immune cells and cellular debris within arterial walls, is accelerated following myocardial infarction by poorly understood mechanisms. Ubiquitin, a small, well-studied intracellular protein involved in protein turnover via the proteasome pathway, has recently been shown to exert extracellular effects on cardiac myocytes, in vitro, and in mice undergoing myocardial remodeling. This study investigates the potential role of extracellular ubiquitin in atherosclerosis by determining its effects on two critical atherosclerotic processes: the migration of vascular smooth muscles cells and the uptake of modified LDL by monocyte/macrophages in foam cell formation. In the presence …


Investigation Of Respiratory Syncytial Virus Structural Determinants And Exploitation Of The Host Ubiquitin System, Jillian Nicole Whelan Apr 2016

Investigation Of Respiratory Syncytial Virus Structural Determinants And Exploitation Of The Host Ubiquitin System, Jillian Nicole Whelan

USF Tampa Graduate Theses and Dissertations

Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. This study explored several avenues to ultimately expand upon our understanding of RSV pathogenesis at the protein level. Evaluation of RSV intrinsic protein disorder increased the relatively limited description of the RSV structure-function relationship. Global proteomics analysis provided direction for further hypothesis-driven investigation of host pathways altered by RSV infection, specifically the interaction between the RSV NS2 protein and the host ubiquitin system. NS2 primarily acts to antagonize the innate immune system by targeting STAT2 for proteasomal degradation. The goal …


Ubiquitin-Specific Peptidase 10 (Usp10) Deubiquitinates And Stabilizes Muts Homolog 2 (Msh2) To Regulate Cellular Sensitivity To Dna Damage, Mu Zhang, Chen Hu, Dan Tong, Shengyan Xiang, Kendra Williams, Wenlong Bai, Guo-Min Li, Gerold Bepler, Xiaohong Zhang Mar 2016

Ubiquitin-Specific Peptidase 10 (Usp10) Deubiquitinates And Stabilizes Muts Homolog 2 (Msh2) To Regulate Cellular Sensitivity To Dna Damage, Mu Zhang, Chen Hu, Dan Tong, Shengyan Xiang, Kendra Williams, Wenlong Bai, Guo-Min Li, Gerold Bepler, Xiaohong Zhang

Toxicology and Cancer Biology Faculty Publications

MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating …


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency …


Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra Dec 2015

Ubiquitin Goes Green, Zhihua Hua, Richard D. Vierstra

Biology Faculty Publications & Presentations

Chloroplasts depend on the nucleus for much of their proteome. Consequently, strong transcriptional coordination exists between the genomes, which is attuned to the developmental and physiological needs of the organelle. Recent studies highlight that the post-translational modifier ubiquitin adds another layer to plastid homeostasis and even helps eliminate damaged chloroplasts.