Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Protein Structure

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 27 of 27

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Structure-Based Drug Discovery And Development Of Protein Structure Prediction Tools Using An Empirical Force Field, Noah B. Herrington Jan 2022

Structure-Based Drug Discovery And Development Of Protein Structure Prediction Tools Using An Empirical Force Field, Noah B. Herrington

Theses and Dissertations

Traditional drug discovery has rapidly accelerated thanks to development of computational molecular modeling. The crucial component that these computational studies hinge upon is having a well-defined, and energetically favorable structure. Structures of proteins and ligands that meet these criteria are important for accurately simulating models used to study drug binding. To demonstrate the role of accurate structure simulation in the study of these events, this thesis presents, first, a story examining the problem of accurate structure modeling of ionizable residues within protein structures, specifically aspartic acid, glutamic acid, and histidine. I present our method, which uses the HINT force field …


A Rational Approach For Creating Peptides Mimicking Antibody Binding, Sameer Sachdeva, Hyun Joo, Jerry Tsai, Bhaskara Jasti, Xiaoling Li Jan 2019

A Rational Approach For Creating Peptides Mimicking Antibody Binding, Sameer Sachdeva, Hyun Joo, Jerry Tsai, Bhaskara Jasti, Xiaoling Li

School of Pharmacy Faculty Articles

This study reports a novel method to design peptides that mimic antibody binding. Using the Knob-Socket model for protein-protein interaction, the interaction surface between Cetuximab and EGFR was mapped. EGFR binding peptides were designed based on geometry and the probability of the mapped knob-sockets pairs. Designed peptides were synthesized and then characterized for binding specificity, affinity, cytotoxicity of drug-peptide conjugate and inhibition of phosphorylation. In cell culture studies, designed peptides specifically bind and internalize to EGFR overexpressing cells with three to four-fold higher uptake compared to control cells that do not overexpress EGFR. The designed peptide, Pep11, bound to EGFR …


Predicting The Structure And Selectivity Of Coiled-Coil Proteins, Mojtaba Jokar Jan 2019

Predicting The Structure And Selectivity Of Coiled-Coil Proteins, Mojtaba Jokar

Wayne State University Dissertations

A coiled-coil protein structure consists of two (in coiled-coil dimers) or more interacting α-helical strands that together form a left-handed supercoil structure. Many coiled-coil proteins are involved in significant biological functions such as the regulation of gene expression, known as transcription factors. Also coiled-coil structures entail unique mechanical properties critical to the function and integrity of various motor proteins, cytoskeletal filaments and extra-cellular matrix proteins. Engineering these transcription factors is also expected to create more efficient and practical solutions to treat neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and prion …


Mechanistic Insights Into Glucan Phosphatase Activity Against Polyglucan Substrates, David A. Meekins, Madushi Raththagala, Kyle D. Auger, Benjamin D. Turner, Diana Santelia, Oliver Kötting, Matthew S. Gentry, Craig W. Vander Kooi Sep 2015

Mechanistic Insights Into Glucan Phosphatase Activity Against Polyglucan Substrates, David A. Meekins, Madushi Raththagala, Kyle D. Auger, Benjamin D. Turner, Diana Santelia, Oliver Kötting, Matthew S. Gentry, Craig W. Vander Kooi

Molecular and Cellular Biochemistry Faculty Publications

Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. …


Characterization Of Ranbpm Molecular Determinants That Control Its Subcellular Localization, Louisa M Salemi, Sandra O Loureiro, Caroline Schild-Poulter Feb 2015

Characterization Of Ranbpm Molecular Determinants That Control Its Subcellular Localization, Louisa M Salemi, Sandra O Loureiro, Caroline Schild-Poulter

Biochemistry Publications

RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. …


Sensing Charges Of The Ciona Intestinalis Voltage-Sensing Phosphatase, Carlos A. Villalba-Galea, Ludivine Frezza, Walter Sandtner, Francisco Bezanilla Nov 2013

Sensing Charges Of The Ciona Intestinalis Voltage-Sensing Phosphatase, Carlos A. Villalba-Galea, Ludivine Frezza, Walter Sandtner, Francisco Bezanilla

School of Pharmacy Faculty Articles

Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to …


Side Chain Requirements For Affinity And Specificity In D5, An Hiv-1 Antibody Derived From The Vh1-69 Germline Segment, Alex Stewart, Joseph S. Harrison, Lauren K. Regula, Jonathan R. Lai Apr 2013

Side Chain Requirements For Affinity And Specificity In D5, An Hiv-1 Antibody Derived From The Vh1-69 Germline Segment, Alex Stewart, Joseph S. Harrison, Lauren K. Regula, Jonathan R. Lai

College of the Pacific Faculty Articles

BACKGROUND: Analysis of factors contributing to high affinity antibody-protein interactions provides insight into natural antibody evolution, and guides the design of antibodies with new or enhanced function. We previously studied the interaction between antibody D5 and its target, a designed protein based on HIV-1 gp41 known as 5-Helix, as a model system [Da Silva, G. F.; Harrison, J. S.; Lai, J. R., Biochemistry, 2010, 49, 5464-5472]. Antibody D5 represents an interesting case study because it is derived from the VH1-69 germline segment; this germline segment is characterized by a hydrophobic second heavy chain complementarity determining region (HCDR2) that constitutes the …


Thermodynamics Of Binding By Calmodulin Correlates With Target Peptide Α-Helical Propensity, Tori B. Dunlap, Jessime M. Kirk, Emily A. Pena, Meghan S. Yoder, Trevor P. Creamer Apr 2013

Thermodynamics Of Binding By Calmodulin Correlates With Target Peptide Α-Helical Propensity, Tori B. Dunlap, Jessime M. Kirk, Emily A. Pena, Meghan S. Yoder, Trevor P. Creamer

Center for Structural Biology Faculty Publications

In this work, we have examined contributions to the thermodynamics of calmodulin (CaM) binding from the intrinsic propensity for target peptides to adopt an α-helical conformation. CaM target sequences are thought to commonly reside in disordered regions within proteins. Using the ability of TFE to induce α-helical structure as a proxy, the six peptides studied range from having almost no propensity to adopt α-helical structure through to a very high propensity. This despite all six peptides having similar CaM-binding affinities. Our data indicate there is some correlation between the deduced propensities and the thermodynamics of CaM binding. This finding implies …


Fuzzy Complex Formation Between The Intrinsically Disordered Prothymosin Α And The Kelch Domain Of Keap1 Involved In The Oxidative Stress Response., Halema Khan, Elio A Cino, Anne Brickenden, Jingsong Fan, Daiwen Yang, Wing-Yiu Choy Mar 2013

Fuzzy Complex Formation Between The Intrinsically Disordered Prothymosin Α And The Kelch Domain Of Keap1 Involved In The Oxidative Stress Response., Halema Khan, Elio A Cino, Anne Brickenden, Jingsong Fan, Daiwen Yang, Wing-Yiu Choy

Biochemistry Publications

Kelch-like ECH-associated protein 1 (Keap1) is an inhibitor of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor for cytoprotective gene activation in the oxidative stress response. Under unstressed conditions, Keap1 interacts with Nrf2 in the cytoplasm via its Kelch domain and suppresses the transcriptional activity of Nrf2. During oxidative stress, Nrf2 is released from Keap1 and is translocated into the nucleus, where it interacts with the small Maf protein to initiate gene transcription. Prothymosin α (ProTα), an intrinsically disordered protein, also interacts with the Kelch domain of Keap1 and mediates the import of Keap1 into the nucleus …


Molecular Mechanism For Depolarization-Induced Modulation Of Kv Channel Closure, Alain J. Labro, Jerome J. Lacroix, Carlos A. Villalba-Galea, Dirk J. Snyders, Francisco Bezanilla Nov 2012

Molecular Mechanism For Depolarization-Induced Modulation Of Kv Channel Closure, Alain J. Labro, Jerome J. Lacroix, Carlos A. Villalba-Galea, Dirk J. Snyders, Francisco Bezanilla

School of Pharmacy Faculty Articles

Voltage-dependent potassium (Kv) channels provide the repolarizing power that shapes the action potential duration and helps control the firing frequency of neurons. The K(+) permeation through the channel pore is controlled by an intracellularly located bundle-crossing (BC) gate that communicates with the voltage-sensing domains (VSDs). During prolonged membrane depolarizations, most Kv channels display C-type inactivation that halts K(+) conduction through constriction of the K(+) selectivity filter. Besides triggering C-type inactivation, we show that in Shaker and Kv1.2 channels (expressed in Xenopus laevis oocytes), prolonged membrane depolarizations also slow down the kinetics of VSD deactivation and BC gate closure during the …


The B Subunits In The Peripheral Stalk Of F1f0 Atp Synthase Preferentially Adopt An Offset Relationship, Shane Claggett, Mac O'Neil Plancher, Stanley Dunn, Brian Cain Oct 2012

The B Subunits In The Peripheral Stalk Of F1f0 Atp Synthase Preferentially Adopt An Offset Relationship, Shane Claggett, Mac O'Neil Plancher, Stanley Dunn, Brian Cain

Stanley D Dunn

The peripheral stalk of F1F0 ATP synthase is essential for the binding of F1 to FO and for proper transfer of energy between the two sectors of the enzyme. The peripheral stalk of Escherichia coli is composed of a dimer of identical b subunits. In contrast, photosynthetic organisms express two b-like genes that form a heterodimeric peripheral stalk. Previously we generated chimeric peripheral stalks in which a portion of the tether and dimerization domains of the E. coli b subunits were replaced with homologous sequences from the b and b' subunits of Thermosynechococcus elongatus (Claggett, S. B., Grabar, T. B., …


Fus-Nls/Transportin 1 Complex Structure Provides Insights Into The Nuclear Targeting Mechanism Of Fus And The Implications In Als, Chunyan Niu, Jiayu Zhang, Feng Gao, Liuqing Yang, Minze Jia, Haining Zhu, Weimin Gong Oct 2012

Fus-Nls/Transportin 1 Complex Structure Provides Insights Into The Nuclear Targeting Mechanism Of Fus And The Implications In Als, Chunyan Niu, Jiayu Zhang, Feng Gao, Liuqing Yang, Minze Jia, Haining Zhu, Weimin Gong

Molecular and Cellular Biochemistry Faculty Publications

The C-terminal nuclear localization sequence of FUsed in Sarcoma (FUS-NLS) is critical for its nuclear import mediated by transportin (Trn1). Familial amyotrophic lateral sclerosis (ALS) related mutations are clustered in FUS-NLS. We report here the structural, biochemical and cell biological characterization of the FUS-NLS and its clinical implications. The crystal structure of the FUS-NLS/Trn1 complex shows extensive contacts between the two proteins and a unique α-helical structure in the FUS-NLS. The binding affinity between Trn1 and FUS-NLS (wide-type and 12 ALS-associated mutants) was determined. As compared to the wide-type FUS-NLS (K(D) = 1.7 nM), each ALS-associated mutation caused a decreased …


Role Of Sequence And Structure Of The Hendra Fusion Protein Fusion Peptide In Membrane Fusion, Everett Clinton Smith, Sonia M. Gregory, Lukas K. Tamm, Trevor P. Creamer, Rebecca Ellis Dutch Aug 2012

Role Of Sequence And Structure Of The Hendra Fusion Protein Fusion Peptide In Membrane Fusion, Everett Clinton Smith, Sonia M. Gregory, Lukas K. Tamm, Trevor P. Creamer, Rebecca Ellis Dutch

Molecular and Cellular Biochemistry Faculty Publications

Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of …


Histone Recognition And Large-Scale Structural Analysis Of The Human Bromodomain Family, Panagis Filippakopoulos, Sarah Picaud, Maria Mangos, Tracy Keates, Jean-Philippe Lambert, Dalia Barsyte-Lovejoy, Ildiko Felletar, Rudolf Volkmer, Susanne Muller, Tony Pawson, Anne-Claude Gingras, Cheryl H. Arrowsmith, Stefan Knapp Mar 2012

Histone Recognition And Large-Scale Structural Analysis Of The Human Bromodomain Family, Panagis Filippakopoulos, Sarah Picaud, Maria Mangos, Tracy Keates, Jean-Philippe Lambert, Dalia Barsyte-Lovejoy, Ildiko Felletar, Rudolf Volkmer, Susanne Muller, Tony Pawson, Anne-Claude Gingras, Cheryl H. Arrowsmith, Stefan Knapp

Biochemistry and Molecular Medicine Faculty Publications

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations …


Active Site Mutations Change The Cleavage Specificity Of Neprilysin., Travis Sexton, Lisa J. Hitchcook, David W. Rodgers, Luke H. Bradley, Louis B. Hersh Feb 2012

Active Site Mutations Change The Cleavage Specificity Of Neprilysin., Travis Sexton, Lisa J. Hitchcook, David W. Rodgers, Luke H. Bradley, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

Neprilysin (NEP), a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe563 and Ser546. Among the mutants studied in detail we observed changes in their activity towards leucine5-enkephalin, insulin B chain, and amyloid β1-40. For example, NEPF563I displayed an increase in preference towards cleaving leucine5-enkephalin relative to insulin B chain, while mutant NEPS546E was less discriminating …


Structural Basis For Activation Of Calcineurin By Calmodulin, Julie Rumi-Masante, Farai I. Rusinga, Terrence E. Lester, Tori B. Dunlap, Todd D. Williams, A. Keith Dunker, David D. Weis, Trevor P. Creamer Jan 2012

Structural Basis For Activation Of Calcineurin By Calmodulin, Julie Rumi-Masante, Farai I. Rusinga, Terrence E. Lester, Tori B. Dunlap, Todd D. Williams, A. Keith Dunker, David D. Weis, Trevor P. Creamer

Center for Structural Biology Faculty Publications

The highly conserved phosphatase calcineurin (CaN) plays vital roles in numerous processes including T-cell activation, development and function of the central nervous system, and cardiac growth. It is activated by the calcium sensor calmodulin (CaM). CaM binds to a regulatory domain (RD) within CaN, causing a conformational change that displaces an autoinhibitory domain (AID) from the active site, resulting in activation of the phosphatase. This is the same general mechanism by which CaM activates CaM-dependent protein kinases. Previously published data have hinted that the RD of CaN is intrinsically disordered. In this work, we demonstrate that the RD is unstructured …


Dimerization And Heme Binding Are Conserved In Amphibian And Starfish Homologues Of The Microrna Processing Protein Dgcr8., Rachel Senturia, Arthur Laganowsky, Ian Barr, Brooke D. Scheidemantle, Feng Guo Jan 2012

Dimerization And Heme Binding Are Conserved In Amphibian And Starfish Homologues Of The Microrna Processing Protein Dgcr8., Rachel Senturia, Arthur Laganowsky, Ian Barr, Brooke D. Scheidemantle, Feng Guo

Natural Sciences and Mathematics | Faculty Scholarship

Human DiGeorge Critical Region 8 (DGCR8) is an essential microRNA (miRNA) processing factor that is activated via direct interaction with Fe(III) heme. In order for DGCR8 to bind heme, it must dimerize using a dimerization domain embedded within its heme-binding domain (HBD). We previously reported a crystal structure of the dimerization domain from human DGCR8, which demonstrated how dimerization results in the formation of a surface important for association with heme. Here, in an attempt to crystallize the HBD, we search for DGCR8 homologues and show that DGCR8 from Patiria miniata (bat star) also binds heme. The extinction coefficients (ε) …


3d Picture Of The Syk-Vav1 Protein Complex: Tracking The B-Cell Signal One Complex At A Time, Dan I. Piraner Jul 2011

3d Picture Of The Syk-Vav1 Protein Complex: Tracking The B-Cell Signal One Complex At A Time, Dan I. Piraner

The Journal of Purdue Undergraduate Research

Protein signaling is the key method by which cells recognize a stimulus from their environment and convert it into a response. Signaling occurs in many forms: hormones, growth factors, and even proteins may act as signals from the environment. The response to their detection must be carried from the cell surface, where the signal is detected, to the nucleus, where the cell alters its DNA expression. This study analyzes one component in the signaling pathway of Spleen Tyrosine Kinase (Syk). The Syk protein receives a signal from B-cell receptors and amplifies it, resulting in an adaptive immune response and the …


Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers Jun 2011

Identification Of The Allosteric Regulatory Site Of Insulysin, Nicholas Noinaj, Sonia K. Bhasin, Eun Suk Song, Kirsten E. Scoggin, Maria A. Juliano, Luiz Juliano, Louis B. Hersh, David W. Rodgers

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Insulin degrading enzyme (IDE) is responsible for the metabolism of insulin and plays a role in clearance of the Aβ peptide associated with Alzheimer's disease. Unlike most proteolytic enzymes, IDE, which consists of four structurally related domains and exists primarily as a dimer, exhibits allosteric kinetics, being activated by both small substrate peptides and polyphosphates such as ATP.

PRINCIPAL FINDINGS: The crystal structure of a catalytically compromised mutant of IDE has electron density for peptide ligands bound at the active site in domain 1 and a distal site in domain 2. Mutating residues in the distal site eliminates allosteric …


Systematic Two-Hybrid And Comparative Proteomic Analyses Reveal Novel Yeast Pre-Mrna Splicing Factors Connected To Prp19, Liping Ren, Janel R. Mclean, Tony R. Hazbun, Stanley Fields, Craig Vander Kooi, Melanie D. Ohi, Kathleen L. Gould Feb 2011

Systematic Two-Hybrid And Comparative Proteomic Analyses Reveal Novel Yeast Pre-Mrna Splicing Factors Connected To Prp19, Liping Ren, Janel R. Mclean, Tony R. Hazbun, Stanley Fields, Craig Vander Kooi, Melanie D. Ohi, Kathleen L. Gould

Molecular and Cellular Biochemistry Faculty Publications

Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1:1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly …


A Monomeric Variant Of Insulin Degrading Enzyme (Ide) Loses Its Regulatory Properties, Eun Suk Song, David W. Rodgers, Louis B. Hersh Mar 2010

A Monomeric Variant Of Insulin Degrading Enzyme (Ide) Loses Its Regulatory Properties, Eun Suk Song, David W. Rodgers, Louis B. Hersh

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Insulin degrading enzyme (IDE) is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure.

METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild …


Comparing Models Of Evolution For Ordered And Disordered Proteins, Celeste J. Brown, Audra K. Johnson, Gary W. Daughdrill Jan 2010

Comparing Models Of Evolution For Ordered And Disordered Proteins, Celeste J. Brown, Audra K. Johnson, Gary W. Daughdrill

Molecular Biosciences Faculty Publications

Most models of protein evolution are based upon proteins that form relatively rigid 3D structures. A significant fraction of proteins, the so-called disordered proteins, do not form rigid 3D structures and sample a broad conformational ensemble. Disordered proteins do not typically maintain long-range interactions, so the constraints on their evolution should be different than ordered proteins. To test this hypothesis, we developed and compared models of evolution for disordered and ordered proteins. Substitution matrices were constructed using the sequences of putative homologs for sets of experimentally characterized disordered and ordered proteins. Separate matrices, at three levels of sequence similarity ( …


Coupling Between The Voltage-Sensing And Phosphatase Domains Of Ci-Vsp, Carlos A. Villalba-Galea, Francesco Miceli, Maurizio Taglialatela, Francisco Bezanilla Jul 2009

Coupling Between The Voltage-Sensing And Phosphatase Domains Of Ci-Vsp, Carlos A. Villalba-Galea, Francesco Miceli, Maurizio Taglialatela, Francisco Bezanilla

School of Pharmacy Faculty Articles

The Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) shares high homology with the phosphatidylinositol phosphatase enzyme known as PTEN (phosphatase and tensin homologue deleted on chromosome 10). We have taken advantage of the similarity between these proteins to inquire about the coupling between the voltage sensing and the phosphatase domains in Ci-VSP. Recently, it was shown that four basic residues (R11, K13, R14, and R15) in PTEN are critical for its binding onto the membrane, required for its catalytic activity. Ci-VSP has three of the basic residues of PTEN. Here, we show that when R253 and R254 (which are the homologues …


The Proton-Translocating A Subunit Of F0f1-Atp Synthase Is Allocated Asymmetrically To The Peripheral Stalk., Monika G Düser, Yumin Bi, Nawid Zarrabi, Stanley D Dunn, Michael Börsch Nov 2008

The Proton-Translocating A Subunit Of F0f1-Atp Synthase Is Allocated Asymmetrically To The Peripheral Stalk., Monika G Düser, Yumin Bi, Nawid Zarrabi, Stanley D Dunn, Michael Börsch

Biochemistry Publications

The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the epsilon or gamma subunits. Three fluorescence resonance energy transfer levels were observed during rotation driven by ATP hydrolysis corresponding to the three resting positions of the rotor subunits, gamma or epsilon, relative to the a subunit of the stator. Comparison of these positions of the rotor sites with those …


Domain Compliance And Elastic Power Transmission In Rotary F(O)F(1)-Atpase., Hendrik Sielaff, Henning Rennekamp, André Wächter, Hao Xie, Florian Hilbers, Katrin Feldbauer, Stanley D Dunn, Siegfried Engelbrecht, Wolfgang Junge Nov 2008

Domain Compliance And Elastic Power Transmission In Rotary F(O)F(1)-Atpase., Hendrik Sielaff, Henning Rennekamp, André Wächter, Hao Xie, Florian Hilbers, Katrin Feldbauer, Stanley D Dunn, Siegfried Engelbrecht, Wolfgang Junge

Biochemistry Publications

The 2 nanomotors of rotary ATP synthase, ionmotive F(O) and chemically active F(1), are mechanically coupled by a central rotor and an eccentric bearing. Both motors rotate, with 3 steps in F(1) and 10-15 in F(O). Simulation by statistical mechanics has revealed that an elastic power transmission is required for a high rate of coupled turnover. Here, we investigate the distribution in the F(O)F(1) structure of compliant and stiff domains. The compliance of certain domains was restricted by engineered disulfide bridges between rotor and stator, and the torsional stiffness (kappa) of unrestricted domains was determined by analyzing their thermal rotary …


The Stator Complex Of The A1a0-Atp Synthase--Structural Characterization Of The E And H Subunits., Erik Kish-Trier, Lee-Ann K Briere, Stanley D Dunn, Stephan Wilkens Jan 2008

The Stator Complex Of The A1a0-Atp Synthase--Structural Characterization Of The E And H Subunits., Erik Kish-Trier, Lee-Ann K Briere, Stanley D Dunn, Stephan Wilkens

Biochemistry Publications

Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with …


Evidence That Talin Alternative Splice Variants From Ciona Intestinalis Have Different Roles In Cell Adhesion, Richard H. Singiser, Richard O. Mccann Dec 2006

Evidence That Talin Alternative Splice Variants From Ciona Intestinalis Have Different Roles In Cell Adhesion, Richard H. Singiser, Richard O. Mccann

Molecular and Cellular Biochemistry Faculty Publications

BACKGROUND: Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is …