Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 781

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur Dec 2020

Molecular Mechanism Of Cyanobacteria Circadian Clock Oscillator And Effect Of Co Factors On Its Oscillation, Manpreet Kaur

Dissertations

The circadian rhythms arise as an adaptation to the environmental 24-hour day and night cycle due to Earth's rotation. These rhythms prepare organisms to align their internal biological activities and day to day behavior or events with the environmental change of the 24-hour day and night cycle. Circadian rhythms are found widely in all living kingdoms of life on Earth. Cyanobacteria are photosynthetic prokaryotes which first used to study these circadian rhythms. Among cyanobacterial species, Synechococcus elongatus PCC 7942 (henceforth, S. Elongatus) is the simplest organism with a durable and sturdy circadian clock and is study as a model organism. …


Preliminary Phytochemical Screening, Proximate Analysis, Antioxidant And Antibacterial Activities Of An Algal Species Of Hydrodictyon Reticulatum, Mubashrah Munir, Arshad Mahmood Khan, Rahmatullah Qureshi, Sidra Murtaza, Mehmooda Munazir Dec 2020

Preliminary Phytochemical Screening, Proximate Analysis, Antioxidant And Antibacterial Activities Of An Algal Species Of Hydrodictyon Reticulatum, Mubashrah Munir, Arshad Mahmood Khan, Rahmatullah Qureshi, Sidra Murtaza, Mehmooda Munazir

Journal of Bioresource Management

The freshwater algae grow in a wide range of aquatic habitats across the globe and are rich in secondary metabolites. The present study was designed to conduct the phytochemical screening, proximate analysis, antioxidant and antibacterial activities of water net (Hydrodictyon reticulatum), an algal weed from Pakistan. The pure and dried algal mass was crushed into a fine powder and four solvent-based extracts were used for phytochemical screening. The results of preliminary qualitative screening indicated the presence of flavonoids, phenols, quinones, steroids, resins, anthraquinones, glycosides, lignin, proteins, saponins, tannins, reducing sugars, alkaloids, terpenoids, fats, and oils, whereas the quantification …


Acid-Triggered Self-Assembled Egg White Protein-Coated Gold Nanoclusters For Selective Fluorescent Detection Of Fe3+, No2-, And Cysteine, Wenyan Li, Xiangping Wen, Hemiao Zhao, Wenjun Yan, John F. Trant, Yingqi Li Dec 2020

Acid-Triggered Self-Assembled Egg White Protein-Coated Gold Nanoclusters For Selective Fluorescent Detection Of Fe3+, No2-, And Cysteine, Wenyan Li, Xiangping Wen, Hemiao Zhao, Wenjun Yan, John F. Trant, Yingqi Li

Chemistry and Biochemistry Publications

Herein, we present a simple and economical synthesis for the first multianalyte probe able to selectively quantify the concentrations of Fe3+, NO2-, and cysteine. It comprises H+-triggered self-assembled gold nanoclusters (AuNCs@EW/H+, AuEHs), showing enhanced red fluorescence at 640 nm. The AuEH is a good fluorescent nanosensor for Fe3+ and NO2- with detection limits of 1.40 and 2.82 nM, respectively. Iron detection, through fluorescence quenching, occurs because of nanocluster aggregation elicited by the complexation of Fe3+ with amino acids on the surface of AuEH; nitrite detection likely proceeds through fluorescence quenching via the disassembly of the nanoclusters following irreversible oxidation by …


A Molecular Toolset For The In Vivo Detection Of A Sulfolobus Islandicus Leucyl Trna Synthetase Paralog, Nicholas Michael Bretz Dec 2020

A Molecular Toolset For The In Vivo Detection Of A Sulfolobus Islandicus Leucyl Trna Synthetase Paralog, Nicholas Michael Bretz

Theses and Dissertations

An ancient and ubiquitous set of enzymes known as the aminoacyl-tRNA synthetases are required for the viability of all organisms. The aminoacyl-tRNA synthetases catalyze the attachment of amino acids onto tRNA molecules. The aminoacylated, or charged, tRNA is then transported and utilized at the ribosome for the synthesis of proteins. The genome of the hyperthermophilic microorganism Sulfolobus islandicus (S. islandicus) harbors a unique leucyl-tRNA synthetase paralog, LeuRS-I, of unknown function. While its duplicate, LeuRS-F, carries out all the classical functions of LeuRS-family enzymes, LeuRS-I fails to charge leucine onto tRNALeu, despite its ability to activate this amino acid and bind …


The Supercam Instrument Suite On The Nasa Mars 2020 Rover: Body Unit And Combined System Tests, Roger C. Wiens, Sylvestre Maurice, Scott H. Robinson, Anthony E. Nelson, Philippe Cais, Pernelle Bernardi, Raymond T. Newell, Sam Clegg, Shiv K. Sharma, Steven Storms, Jonathan Deming, Darrel Beckman, Ann M. Ollila, Olivier Gasnault, Ryan B. Anderson, Yves André, Stanley M. Angel, Gorka Arana, Elizabeth Auden, Pierre Beck, Et. Al. Dec 2020

The Supercam Instrument Suite On The Nasa Mars 2020 Rover: Body Unit And Combined System Tests, Roger C. Wiens, Sylvestre Maurice, Scott H. Robinson, Anthony E. Nelson, Philippe Cais, Pernelle Bernardi, Raymond T. Newell, Sam Clegg, Shiv K. Sharma, Steven Storms, Jonathan Deming, Darrel Beckman, Ann M. Ollila, Olivier Gasnault, Ryan B. Anderson, Yves André, Stanley M. Angel, Gorka Arana, Elizabeth Auden, Pierre Beck, Et. Al.

Faculty Publications

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: …


Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells Dec 2020

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells

Honors Program Theses and Projects

Doxorubicin is a successful anticancer drug approved for use in the 1970s and is considered to be one of the most effective cancer treatment methods today. Although Doxorubicin has positive survival statistics it has very negative side effects in many cases. Bleeding from the soles of the palms and feet, along with excruciating pain is often exhibited through the administration of this drug. Based on the preliminary findings utilizing optical tweezers we anticipate that this study will provide critical information about the drug binding mechanism. Single molecule biophysics techniques have provided useful insight into the DNA-binding mechanisms of small molecules. …


Investigation Of Shot1-Binding Atpases In Arabidopsis Thaliana, Sam Zelman Dec 2020

Investigation Of Shot1-Binding Atpases In Arabidopsis Thaliana, Sam Zelman

Masters Theses

Mitochondria play critical roles not only in primary metabolism as a central organelle for ATP generation, but also in responding to abiotic stresses. We identified a mutation in the MTERF18 (Mitochondrial Transcription Termination factor)/SHOT1 (Suppressor of hot1-4 1) gene in Arabidopsis thaliana that enables plants to better tolerate heat and oxidative stresses, presumably due to reduced oxidative damage, but the exact molecular mechanism of the heat tolerance is unknown. In order to reveal the stress tolerance mechanisms of mterf18/shot1 mutations, it is critical to understand the molecular defects of the mutant and to identify …


Exploration Of The Association Between Muscle Volume And Bone Geometry Reveals Surprising Relationship At The Genetic Level, Prakrit Subba Dec 2020

Exploration Of The Association Between Muscle Volume And Bone Geometry Reveals Surprising Relationship At The Genetic Level, Prakrit Subba

Masters Theses

The evolution of jaws in cichlid fishes of the East African Great Lakes is a textbook example of adaptive radiation in vertebrates. Karl Liem postulated that this adaptive radiation has been possible due to the functional decoupling of two cichlid functional units – the pharyngeal jaw (PJ) and the oral jaw (OJ). This functional decoupling of the jaws has enabled the OJ to be relieved of its dual role of prey capturing and processing and has allowed the PJ to take on the role of prey processing. As a result, African cichlids have adapted the morphology of their functional units …


Assessing Stress Tolerance Of Organelle Small Heat Shock Protein Mutants In Arabidopsis Thaliana, Parth Patel Dec 2020

Assessing Stress Tolerance Of Organelle Small Heat Shock Protein Mutants In Arabidopsis Thaliana, Parth Patel

Masters Theses

Molecular chaperones are proteins found in virtually every organism and are essential to cell survival. When plants are heat stressed, they upregulate and downregulate multiple genes, many of which are associated with the heat shock response. Small heat shock proteins (sHSPs) are one class of molecular chaperones that are upregulated during heat shock. They are proposed to act as the first line of defense by binding to heat sensitive proteins and preventing their irreversible aggregation. However, many details of sHSP function remain to be discovered and exactly what proteins they protect is unresolved. In addition to cytosolic sHSPs found in …


The Shape Of U: Mapping Out Protective Elements In Mrna Escapees, Jacob Miles Dec 2020

The Shape Of U: Mapping Out Protective Elements In Mrna Escapees, Jacob Miles

Masters Theses

A crucial step of the viral life cycle of Kaposi’s Sarcoma Herpesvirus (KSHV) lytic infection is the triggering of a massive RNA decay event termed “Host Shutoff”. Host Shutoff is driven by the viral endonuclease SOX which leads to the destruction of over 70% of the total transcriptome. This process cripples cellular gene expression and allows for viral reprograming of the cell for the purpose of viral replication. Co-evolution has led to the host developing a multitude of antiviral defenses aimed at preserving certain cellular RNAs linked to antiviral responses. One such defense are RNA secondary structures located within the …


A Rational Design Approach To Developing Second Generation Fabry Disease Treatments, Matthew Metcalf Dec 2020

A Rational Design Approach To Developing Second Generation Fabry Disease Treatments, Matthew Metcalf

Doctoral Dissertations

Fabry disease is an X-linked lysosomal storage disorder that affects approximately 1 in 40,000 males in its classical form and as many as 1:4,600 in its late-onset form [1]. The disease is caused by mutations in the gene encoding α- galactosidase (α-GAL), which results in deficient levels of α-GAL activity in the lysosomes of patients [2, 3]. This lack of enzymatic activity causes macromolecular substrates to accumulate in tissues, and can result in a wide range of symptoms such as impaired renal and cardiac function [4]. The severity of disease is linked to the amount of residual …


Rna Structure And Function: Biological Relevance In Neurodegenerative And Infectious Disease Pathogenesis, Joshua Imperatore Dec 2020

Rna Structure And Function: Biological Relevance In Neurodegenerative And Infectious Disease Pathogenesis, Joshua Imperatore

Electronic Theses and Dissertations

The studies outlined in this dissertation encompass a broad focus, relating to the pathogenesis of neurological disorders such as Alzheimer’s disease, fragile X syndrome, and amyotrophic lateral sclerosis, as well as a novel infectious disease, COVID-19. However, all four studies detailed within this dissertation contain similar elements, namely, the coordinated role of RNA structure and function in essential molecular mechanisms. The results of these investigations allow us to speculate on various disease- related mechanisms, including dysregulated microRNA processing pathways, nucleocytoplasmic shuttling via distinct RNA-protein interactions, and fine-tuned molecular switches controlling genomic dimerization and viral hijacking of host cellular microRNAs. Taken …


Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt Dec 2020

Applied Molecular Dynamics: From Targeting Viral Helicases, To Understanding The Interactions Of Cucurbituril Complexes In Ionic Solutions, Bryan Raubenolt

University of New Orleans Theses and Dissertations

Molecular Dynamics simulations are a highly useful tool in helping understand the fundamental interactions present in a variety of chemical systems. The work discussed here illustrates it’s use in determining the conformational dynamics of the Zika and SARS-Cov-2 helicase in a physiological environment, largely in an effort to discover inhibitors capable of rendering the protein inert. Additionally, we show how it can be used to understand paradoxical trends in the anion-induced precipitation of Cucurbituril cavitands.

Viral helicases are motor proteins tasked with unwinding the viral dsRNA, a crucial step in preparing the strand to be translatable by host cells. By …


Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu Dec 2020

Mechanisms By Which Mnte-2-Pyp Suppresses Prostate Cancer Cell Growth, Yuxiang Zhu

Theses & Dissertations

Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, is a superoxide dismutase (SOD) mimic and a known radioprotector of normal tissues. Our recent work demonstrates that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this thesis, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting growth of prostate cancer cells. We found that MnTE-2-PyP induced protein oxidations in PC3 cells and one major group of oxidized protein targets were involved in energy metabolism. The oxidative phosphorylation rates were significantly enhanced in both PC3 and LNCaP cells with MnTE-2-PyP treatment, but mitochondrial …


Epigenetic Regulation Of Wnt Signaling By Carboxamide-Substituted Benzhydryl Amines That Function As Histone Demethylase Inhibitors, Wen Zhang, Vitaliy M. Sviripa, Yanqi Xie, Tianxin Yu, Meghan G. Haney, Jessica S. Blackburn, Charles A. Adeniran, Chang-Guo Zhan, David S. Watt, Chunming Liu Dec 2020

Epigenetic Regulation Of Wnt Signaling By Carboxamide-Substituted Benzhydryl Amines That Function As Histone Demethylase Inhibitors, Wen Zhang, Vitaliy M. Sviripa, Yanqi Xie, Tianxin Yu, Meghan G. Haney, Jessica S. Blackburn, Charles A. Adeniran, Chang-Guo Zhan, David S. Watt, Chunming Liu

Molecular and Cellular Biochemistry Faculty Publications

Aberrant activation of Wnt signaling triggered by mutations in either Adenomatous Polyposis Coli (APC) or CTNNB1 (β-catenin) is a hallmark of colorectal cancers (CRC). As part of a program to develop epigenetic regulators for cancer therapy, we developed carboxamide-substituted benzhydryl amines (CBAs) bearing either aryl or heteroaryl groups that selectively targeted histone lysine demethylases (KDMs) and functioned as inhibitors of the Wnt pathway. A biotinylated variant of N-((5-chloro-8-hydroxyquinolin-7-yl) (4-(diethylamino)phenyl)-methyl)butyramide (CBA-1) identified KDM3A as a binding partner. KDM3A is a Jumonji (JmjC) domain-containing demethylase that is significantly upregulated in CRC. KDM3A regulates the demethylation of histone H3's lysine …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora Dec 2020

Investigating The Accumulation, Sub-Organ Distribution, And Biochemical Effects Of Nanomaterials Using Mass Spectrometry, Kristen Nicole Sikora

Doctoral Dissertations

Gold nanoparticles (AuNPs) are attractive materials for use in various biomedical applications, such as therapeutic delivery, due to their unique chemical properties and modular tunability. Mass spectrometry methods, including laser desorption/ionization mass spectrometry (LDI-MS) and inductively coupled plasma mass spectrometry (ICP-MS) have been successfully used to evaluate the distribution of AuNPs in complex biological systems. As new AuNP-based materials are developed for applications in therapeutic delivery, it is essential to simultaneously develop analytical techniques that can comprehensively assess their behavior in vivo. In this dissertation, novel mass spectrometric methods have been developed and utilized to evaluate the uptake, distribution, …


Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace Dec 2020

Live Cell Super-Resolution Microscopy Quanitifies An Interaction Between Influenza Hemagglutinin And Phosphatidylinositol 4,5-Bisphosphate, Jaqulin N. Wallace

Electronic Theses and Dissertations

Influenza virus, colloquially known as the flu, is an acute respiratory disease that infects several millions of individuals each year in the U.S. and kills tens of thousands of those infected. Yearly viral vaccines are widely available, however, due to the virus’s high mutation rate, their efficacy varies greatly. Due to the variability in vaccine efficiency against seasonal influenza, and the potential for even more pathogenic versions of influenza to emerge at any time, there is a high demand for a universal treatment option.

Influenza virus hijacks a variety of host cell components in order to replicate. The glycoprotein hemagglutinin …


Examining The Function Of Protein Acyltransferase Via The Dhhc Domain Of The Paz5 Protein In The Organism Dictyostelium Discoideum, George M. Stuart-Ranchev Dec 2020

Examining The Function Of Protein Acyltransferase Via The Dhhc Domain Of The Paz5 Protein In The Organism Dictyostelium Discoideum, George M. Stuart-Ranchev

Electronic Theses and Dissertations

Protein S-palmitoylation plays a crucial role in many biological systems. S-palmitoylation involves the post-translational attachment of palmitate to a cysteine residue through a reversible thioester linkage. S-Palmitoylation is used to modify both integral and membrane proteins, many of which are involved in intracellular trafficking, membrane localization, and signal transduction pathways. Intracellular palmitoylation is mediated by a family of protein acyltransferases (PATs). PAT mutations are associated with neurological diseases and cancer progression. Proteins in the PAT family are defined by the presence of a 51-amino acid cysteine-rich domain (CRD), which contains a highly conserved aspartate-histidine-histidine-cysteine (DHHC) motif. The …


Determination And Dissection Of Dna-Binding Specificity For The Thermus Thermophilus Hb8 Transcriptional Regulator Tthb099, Kristi Moncja Dec 2020

Determination And Dissection Of Dna-Binding Specificity For The Thermus Thermophilus Hb8 Transcriptional Regulator Tthb099, Kristi Moncja

Master of Science in Chemical Sciences Theses

Transcription factors (TFs) have been extensively researched in certain well-studied organisms but far less so in others. Following the whole-genome sequencing of a new organism, TFs are typically identified through their homology with related proteins in other organisms. However, recent findings demonstrate that structurally similar TFs from distantly related bacteria are not usually evolutionary orthologs. Here we explore TTHB099, a cAMP receptor protein (CRP)-family TF from the extremophile Thermus thermophilus HB8. Using the in vitro iterative selection method Restriction Endonuclease Protection, Selection and Amplification (REPSA), we identified the preferred DNA-binding motif for TTHB099, 5'-TGT(A/g)n(t/c)c(t/c)(a/g)g(a/g)n(T/c)ACA-3', and mapped potential binding sites, and …


Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma Dec 2020

Micro-Physiological Models To Mimic Mucosal Barrier Complexity Of The Human Intestine In Vitro, Abhinav Sharma

Doctoral Dissertations

The mucosal barrier in the intestine is vital to maintain selective absorption of nutrients while protecting internal tissues and maintaining symbiotic relationship with luminal microbiota. This bio-barrier consists of a cellular epithelial barrier and an acellular mucus barrier. Secreted mucus regulates barrier function via in situ biochemical and biophysical interaction with luminal content that continually evolves during digestion and absorption. Increasing evidence suggests that a mucus barrier is indispensable to maintain homeostasis in the gastrointestinal tract. However, the importance of mucus barrier is largely underrated for in vitro mucosal tissue modeling. The major gap is the lack of experimental material …


Engineering Mesothelin-Binding Proteins As Targeted Cancer Diagnostics And Therapeutics, Allison Rita Sirois Dec 2020

Engineering Mesothelin-Binding Proteins As Targeted Cancer Diagnostics And Therapeutics, Allison Rita Sirois

Doctoral Dissertations

Cancer is a significant global health concern; and traditional therapies, including chemotherapeutics, are often simultaneously toxic yet ineffective. There is a critical need to develop targeted cancer therapeutics which specifically inhibit molecules or molecular pathways essential for tumor growth and maintenance. Furthermore, a targeted therapy is only effective when a patient's tumor expresses the molecular target; therefore, companion diagnostics, including molecular imaging agents, are a necessary counterpart of targeted therapies. Mesothelin (MSLN) is a cell surface protein overexpressed in numerous cancers, including triple-negative breast, pancreatic, ovarian, liver, and lung, with limited expression in normal tissues. Aberrant MSLN expression promotes tumor …


Identification Of Clonal Evolution Pattern And Mutation Event Associated With Relapsed/Refractory Diffuse Large B-Cell Lymphoma Using Next-Generation Sequencing, Cheng Wang Dec 2020

Identification Of Clonal Evolution Pattern And Mutation Event Associated With Relapsed/Refractory Diffuse Large B-Cell Lymphoma Using Next-Generation Sequencing, Cheng Wang

Theses & Dissertations

Diffuse large B-cell lymphoma (DLBCL) is an aggressive lymphoid malignancy. About 30% of DLBCL cases respond poorly to initial treatment and eventually relapse. For these patients, the current treatment regimen is quite limited, and the prognosis is poor. Gene mutations and genetic alterations play an important role in lymphomagenesis. However, the genetic alterations or gene mutations underlying the disease resistance/relapse in DLBCL are still unknown. The clonal evolution during the process of disease progression is elusive as well. Our goal is to study the genetic alterations in DLBCL, particularly paired diagnostic and relapsed/refractory DLBCL, to better understand the mutation landscape …


Deciphering The Catalytic Mechanism Of Human Manganese Superoxide Dismutase, Jahaun Azadmanesh Dec 2020

Deciphering The Catalytic Mechanism Of Human Manganese Superoxide Dismutase, Jahaun Azadmanesh

Theses & Dissertations

The livelihood of human cells is heavily dependent on the ability to modulate the presence of highly reactive oxygen-based molecules termed reactive oxygen species (ROS). In excess, ROS facilitate oxidative damage to the macromolecules of cellular life. SODs are the major family of antioxidant proteins that prevent the buildup of overwhelming amounts of ROS within cells. Sometimes dubbed the “first line of defense” against oxidative damage, SODs defend against the harmful accumulation of ROS by eliminating superoxide. Superoxide is a ROS itself that is also a precursor to much more harmful ROS molecules. MnSOD is the manganese containing form of …


Elucidating The Role Of Ecdysoneless In Mrna Processing, Irfana Saleem Dec 2020

Elucidating The Role Of Ecdysoneless In Mrna Processing, Irfana Saleem

Theses & Dissertations

The mammalian orthologue of the evolutionarily conserved Ecdysoneless (ECD) protein is required for embryogenesis, cell cycle progression and mitigation of ER stress. However, the molecular mechanisms of ECD function in mammalian cells remain unclear. Here, using mass spectrometry analysis of the mammalian ECD interactome, we identified several components of the mRNA export complexes as binding partners of ECD and then characterized the functional interaction of ECD with key mRNA export-related DEAD BOX protein helicase DDX39A and its associated partners. FISH analysis of Poly-A-tailed mRNAs revealed that ECD depletion/deletion blocks the mRNA export from the nucleus to the cytoplasm. We have …


Characterizing The Critical Role Of Metabolic And Redox Homeostasis In Colorectal Cancer, Danielle Frodyma Dec 2020

Characterizing The Critical Role Of Metabolic And Redox Homeostasis In Colorectal Cancer, Danielle Frodyma

Theses & Dissertations

Metabolic alterations are a hallmark of cancer and the mechanism by which these adaptations sustain cancer cell growth are complex and dependent on tissue type. In colon cancer, Peroxisome Proliferator Activated Receptor γ Coactivator 1 β(PGC1��) and Estrogen-Related Receptor α (ERR��) are overexpressed and contribute to tumor growth. Previous studies have shown that PGC1�� and ERR�� regulate many metabolic processes by controlling vital gene expression. Here, we show that PGC1�� and ERR�� drive oxidative phosphorylation and glycolysis in colon cancer cell lines and we evaluated downstream effectors and processes.

A dysfunction in the reductive and oxidative capacity of the cell …


Let-Dependent Low Dose And Synergistic Inhibition Of Human Angiogenesis By Charged Particles: Validation Of Mirnas That Drive Inhibition, Amber M. Paul, Yen-Ruh Wuu, Burong Hu, Hazeem Okunola, Elizabeth A. Blaber, Margareth Cheng-Campbell, Afshin Beheshti, Peter Grabham Dec 2020

Let-Dependent Low Dose And Synergistic Inhibition Of Human Angiogenesis By Charged Particles: Validation Of Mirnas That Drive Inhibition, Amber M. Paul, Yen-Ruh Wuu, Burong Hu, Hazeem Okunola, Elizabeth A. Blaber, Margareth Cheng-Campbell, Afshin Beheshti, Peter Grabham

Publications

Space radiation inhibits angiogenesis by two mechanisms depending on the linear energy transfer (LET). Using human 3D micro-vessel models, blockage of the early motile stage of angiogenesis was determined to occur after exposure to low LET ions (/AMU), whereas inhibition of the later stages occurs after exposure to high LET ions (>8 KeV/AMU). Strikingly, the combined effect is synergistic, detectible as low as 0.06 Gy making mixed ion space radiation more potent. Candidates for bystander transmission are microRNAs (miRNAs), and analysis on miRNA-seq data from irradiated mice shows that angiogenesis would in theory be downregulated. Further analysis of three …


Correction: Moxley, R.A., Et Al. Intimate Attachment Of Escherichia Coli O157:H7 To Urinary Bladder Epithelium In The Gnotobiotic Piglet Model. Microorganisms 2020, 8, 263, Rodney A. Moxley, Tom W. Bargar, Stephen D. Kachman, Diane R. Baker, David Francis Dec 2020

Correction: Moxley, R.A., Et Al. Intimate Attachment Of Escherichia Coli O157:H7 To Urinary Bladder Epithelium In The Gnotobiotic Piglet Model. Microorganisms 2020, 8, 263, Rodney A. Moxley, Tom W. Bargar, Stephen D. Kachman, Diane R. Baker, David Francis

School of Veterinary and Biomedical Sciences: Faculty Publications

The authors wish to make the following corrections to this paper [1]: On page 2, the sentence that reads, “Hence, EHEC is a rare but established cause of HUS in children and adults.” should read, “Hence, EHEC is a rare but established cause of UTI-associated HUS in children and adults.” On page 4, the sentence that reads, “As noted previously, 14 of 126 (13.3%) piglets orally inoculated with EHEC O157:H7 strains developed mild to moderate purulent cystitis within 8 d PI [25] (Table 1).” should read, “As noted previously, 14 of 105 (13.3%) piglets orally inoculated with EHEC O157:H7 strains …


Enzymatic Analysis Of Yeast Cell Wall-Resident Gapdh And Its Secretion, Michael J. Cohen, Brianne Philippe, Peter N. Lipke Dec 2020

Enzymatic Analysis Of Yeast Cell Wall-Resident Gapdh And Its Secretion, Michael J. Cohen, Brianne Philippe, Peter N. Lipke

Publications and Research

In yeast, many proteins are found in both the cytoplasmic and extracellu- lar compartments, and consequently it can be difficult to distinguish nonconventional secretion from cellular leakage. Therefore, we monitored the extracellular glyceralde- hyde-3-phosphate dehydrogenase (GAPDH) activity of intact cells as a specific marker for nonconventional secretion. Extracellular GAPDH activity was proportional to the number of cells assayed, increased with incubation time, and was dependent on added substrates. Preincubation of intact cells with 100mM dithiothreitol increased the reac- tion rate, consistent with increased access of the enzyme after reduction of cell wall di- sulfide cross-links. Such treatment did not increase …


Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff Dec 2020

Single-Fluorophore Sensors For Mechanical Force In Living Cells, Sarah Kricheff

Honors Scholar Theses

Mechanotransduction is the process by which a mechanical stimulus is converted to a cellular signal. This process is heavily influential of cell morphology, differentiation, and behavior. However, altered levels of mechanical stimuli are also found in many pathological contexts. For example, cancerous cells have stiffer surrounding tissue than healthy cells, and research suggests that this alters cell behavior and promotes metastasis. Despite these findings, the cellular processes behind these signaling alterations remain widely unknown. Understanding these cascades is critical, as involved proteins can give us a deeper understanding of the role of mechanotransduction, and certain proteins can potentially be targeted …