Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

2014

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 61 - 90 of 801

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi Dec 2014

Atom-Based Geometrical Fingerprinting Of Conformal Two-Dimensional Materials, Mehrshad Mehboudi

Graduate Theses and Dissertations

The shape of two-dimensional materials plays a significant role on their chemical and physical properties. Two-dimensional materials are basic meshes that are formed by mesh points (vertices) given by atomic positions, and connecting lines (edges) between points given by chemical bonds. Therefore the study of local shape and geometry of two-dimensional materials is a fundamental prerequisite to investigate physical and chemical properties. Hereby the use of discrete geometry to discuss the shape of two-dimensional materials is initiated.

The local geometry of a surface embodied in 3D space is determined using four invariant numbers from the metric and curvature tensors which …


Modulation Of T Lymphocytes By Tumor-Released Survivin, Jessica Marie Jutzy Dec 2014

Modulation Of T Lymphocytes By Tumor-Released Survivin, Jessica Marie Jutzy

Loma Linda University Electronic Theses, Dissertations & Projects

The tumor microenvironment is an area of intense interaction between normal and malignant cells. Factors and cell types within this environment can play a crucial role in the progression or regression of the tumor. Of primary interest are tumor-infiltrating T lymphocytes, which have been shown to have a key role in modifying the dynamics of the tumor microenvironment to promote or prevent tumor growth. While there is much in vitro and in vivo evidence for a modification of the tumor infiltrating T cell population toward a pro-tumor environment, what induces these changes within the tumor microenvironment has remained elusive. Our …


Characterization And Role Of Msaabcr In Biofilm Development And Virulence In Staphylococcus Aureus, Gyan Sundar Sahukhal Dec 2014

Characterization And Role Of Msaabcr In Biofilm Development And Virulence In Staphylococcus Aureus, Gyan Sundar Sahukhal

Dissertations

Community-acquired, methicillin-resistant Staphylococcus aureus strains often cause localized infections in immune-compromised hosts, but some strains show enhanced virulence leading to severe infections even among healthy individuals with no predisposing risk factors. The genetic basis for this enhanced virulence has yet to be determined. S. aureus possesses a wide variety of virulence factors, the expression of which is carefully coordinated by a variety of regulators. Several virulence regulators have been well characterized, but others have yet to be thoroughly investigated. Previously, the msa gene as a regulator of several virulence genes, biofilm development, and antibiotic …


Fabrication, Characterization, Optimization And Application Development Of Novel Thin-Layer Chromatography Plates, Supriya Singh Kanyal Dec 2014

Fabrication, Characterization, Optimization And Application Development Of Novel Thin-Layer Chromatography Plates, Supriya Singh Kanyal

Theses and Dissertations

This dissertation describes advances in the microfabrication of thin layer chromatography (TLC) plates. These plates are prepared by the patterning of carbon nanotube (CNT) forests on substrates, followed by their infiltration with an inorganic material. This document is divided into ten sections or chapters. Chapter 1 reviews the basics of conventional TLC technology. This technology has not changed substantially in decades. This chapter also mentions some of the downsides of the conventional approach, which include unwanted interactions of the binder in the plates with the analytes, relatively slow development times, and only moderately high efficiencies. Chapter 2 focuses primarily on …


Enzyme Kinetics : 6-Phosphofructo-2-Kinase/2,6-Bisphosphatase., Jennifer Clark Dec 2014

Enzyme Kinetics : 6-Phosphofructo-2-Kinase/2,6-Bisphosphatase., Jennifer Clark

Electronic Theses and Dissertations

Altered energy metabolism is an established hallmark of cancer cells. Fructose-2,6-bisphosphate is an allosteric activator of glycolysis and its concentration in a cell is dictated by the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) family of bifunctional enzymes. The PFKFB family of enzymes are characterized by their different kinase: bisphosphatase activities and were originally determined to be tissue-specific. More recent data however suggest that multiple isoforms are co-expressed in both normal and neoplastic tissues. PFKFB4 is highly expressed in human cancer, strongly induced by hypoxia, and required for the survival of cancer cells. However, it remains unclear whether the kinase or phosphatase activity of human …


Aminoglycoside-Induced Otoneurotoxicity: Analysis Of Inner Hair Cell Synaptic Plasticity Following Drug Exposure, Matthew M. Abernathy Dec 2014

Aminoglycoside-Induced Otoneurotoxicity: Analysis Of Inner Hair Cell Synaptic Plasticity Following Drug Exposure, Matthew M. Abernathy

Dissertations

Aminoglycoside antibiotics are powerful drugs for combating bacterial infections, but are limited in use due to their ototoxicity. This class of drug targets the auditory hair cells of the cochlea, causing cell death, which leads to a decline in auditory function. In spite of much research aimed at revealing a mechanism of damage, there are no co-therapies available to diminish the ototoxic liability of aminoglycosides. Existing research does show that there may be a neurodegenerative process that contributes to the observed toxicity. In an effort towards clarifying present understanding of issue, this dissertation project was conducted to characterize the neurodegenerative …


Ultrafast Interfacial Electron Transfer Across Molecule-Tio2 Nanocomposites: Towards Solar Cells And Two Photon Absorption, Edwin Mghanga Dec 2014

Ultrafast Interfacial Electron Transfer Across Molecule-Tio2 Nanocomposites: Towards Solar Cells And Two Photon Absorption, Edwin Mghanga

Dissertations

Interfacial charge transfer (ICT) across the molecule-TiO2 nanoparticle interface has gained enormous research attention for applications in dye sensitized solar cells (DSSC), photo-catalysis, water splitting and nonlinear optics. DSSCs are promising clean alternative energy sources. However, current DSSCs suffer from lower efficiencies and higher cost. Better understanding of the ICT processes in DSSCs can help solve these problems. We have used two strategies to understand ICT in the context of DSSCs. Firstly, we used a computationally validated anchor group, acetylacetonate (acac) to bind molecules to the semiconductor surface and facilitate charge separation. Secondly, we used natural dye sensitizers, …


The Role Of Stem Cells In Adipose Tissue Remodeling., Candice Reshay Holden 1988- Dec 2014

The Role Of Stem Cells In Adipose Tissue Remodeling., Candice Reshay Holden 1988-

Electronic Theses and Dissertations

The work presented in this dissertation outlines the role of stem cells in the remodeling of adipose tissue under conditions of nutrient excess. Obesity-induced variations in adipose tissue stem cell distribution were uncovered by analysis of the stromal vascular fraction isolated from mice fed a high fat diet for several weeks. Bone marrow cell transplantation was used to determine the derivation of progenitor cells found in adipose tissue; and supplementation of depleted progenitor cell populations achieved via direct cell transplantation, helped to determine the contribution of these progenitor cells to the remodeling process. The dissertation is presented in five chapters …


Troglitazone Suppresses Glutamine Metabolism And Tumor Cell Growth Through A Ppar-Independent Mechanism., Miriam R. Reynolds 1965- Dec 2014

Troglitazone Suppresses Glutamine Metabolism And Tumor Cell Growth Through A Ppar-Independent Mechanism., Miriam R. Reynolds 1965-

Electronic Theses and Dissertations

In tumor cells, glutamine metabolism provides anaplerotic carbon for the TCA cycle, fatty acid synthesis, and precursors for the production of nucleotides and glutathione. This metabolic alteration is primarily driven by disruptions in oncogenic or tumor suppressor function and results in glutamine dependency for tumor cell survival. Troglitazone, a PPARγ agonist, has been reported to alter glutamine metabolism. This thesis project addresses whether troglitazone treatment could disrupt glutamine metabolism in glutamine-dependent tumor cells. Results obtained with troglitazone treatment include: dose-dependent inhibition of cell proliferation, glutamine uptake, glutaminolytic protein expression, steady-state ATP levels, and glutamine carbon flux into the TCA cycle. …


A Step Towards Understanding Of The Molecular Basis Of Ligand Promiscuity In The Aminoglycoside Modifying Enzymes, Sherin R. Raval Dec 2014

A Step Towards Understanding Of The Molecular Basis Of Ligand Promiscuity In The Aminoglycoside Modifying Enzymes, Sherin R. Raval

Masters Theses

Aminoglycosides have proven very useful in the treatment of infections; lately their effectiveness has been greatly reduced due to increasing resistance. Among many known mechanisms of resistance to aminoglycosides, enzymatic modification is the most prevailing. More than 14 aminoglycoside -N3-acetyltransferases- a class of aminoglycoside modifying enzymes, are known today. This study focuses on a pair of acetyl transferases: The aminoglycoside-N3- acetyltransferase IIIb (AAC-IIIb) and the aminoglycoside-N3- acetyltransferase IIa (AAC-IIa). AAC-IIa and AAC-IIIb are very similar in their amino acid sequence and structure – yet they have a strong difference in their substrate selectivity, kinetic …


Localization Of Chemoreceptors In Azospirillum Brasilense., Anastasia Aksenova Dec 2014

Localization Of Chemoreceptors In Azospirillum Brasilense., Anastasia Aksenova

Masters Theses

In order to ensure their survival, bacteria must sense and adapt to a variety of environmental signals. Motile bacteria are able to orient their movement in a chemical gradient by chemotaxis. During chemotaxis, environmental signals are detected by chemotaxis receptors and are propagated via a signal transduction cascade to affect bacterial motility. In a model organism Escherichia coli, chemotaxis receptors, also called MCPs (for methyl-accepting chemotaxis proteins) sense changes in concentration gradients by making temporal comparisons about the chemical composition of their surroundings. Decreased attractant concentration or increased repellant concentration results in conformational changes in the MCPs that culminate …


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

Dissertations & Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms a heterotrimeric …


Synchronous Opening And Closing Motions Are Essential For Camp-Dependent Protein Kinase A Signaling, Atul K. Srivastava, Leanna R. Mcdonald, Alessandro Cembran, Jonggul Kim, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Gianluigi Veglia Nov 2014

Synchronous Opening And Closing Motions Are Essential For Camp-Dependent Protein Kinase A Signaling, Atul K. Srivastava, Leanna R. Mcdonald, Alessandro Cembran, Jonggul Kim, Larry R. Masterson, Christopher L. Mcclendon, Susan S. Taylor, Gianluigi Veglia

Larry Masterson

Conformational fluctuations play a central role in enzymatic catalysis. However, it is not clear how the rates and the coordination of the motions affect the different catalytic steps. Here, we used NMR spectroscopy to analyze the conformational fluctuations of the catalytic subunit of the cAMP-dependent protein kinase (PKA-C), a ubiquitous enzyme involved in a myriad of cell signaling events. We found that the wild-type enzyme undergoes synchronous motions involving several structural elements located in the small lobe of the kinase, which is responsible for nucleotide binding and release. In contrast, a mutation (Y204A) located far from the active site desynchronizes the opening and …


The Lineage-Specific Evolution Of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation, Roderick Nigel Finn, François Chauvigné, Jón Baldur Hlidberg, Christopher P. Cutler, Joan Cerdà Nov 2014

The Lineage-Specific Evolution Of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation, Roderick Nigel Finn, François Chauvigné, Jón Baldur Hlidberg, Christopher P. Cutler, Joan Cerdà

Department of Biology Faculty Publications

A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of …


The Role Of The Ku70 Vwa Domain In The Response To Dna Double Strand Breaks, Victoria L. Fell Nov 2014

The Role Of The Ku70 Vwa Domain In The Response To Dna Double Strand Breaks, Victoria L. Fell

Electronic Thesis and Dissertation Repository

Ku is an abundant, highly conserved DNA binding protein found in both prokaryotes and eukaryotes that plays essential roles in the maintenance of genome integrity. In eukaryotes, Ku is a heterodimer comprised of two subunits, Ku70 and Ku80, and is best characterized for its central role as the initial DNA end binding factor in the “classical” non-homologous end joining (C-NHEJ) pathway, the main DNA double-strand break (DSB) repair pathway in mammals. At the break, Ku directly and indirectly interacts with several C-NHEJ factors and processing enzymes, serving as the scaffold for the entire DNA repair complex. In this work we …


Acquisition And Reconstruction Techniques For Fat Quantification Using Magnetic Resonance Imaging, Abraam S. Soliman Nov 2014

Acquisition And Reconstruction Techniques For Fat Quantification Using Magnetic Resonance Imaging, Abraam S. Soliman

Electronic Thesis and Dissertation Repository

Quantifying the tissue fat concentration is important for several diseases in various organs including liver, heart, skeletal muscle and kidney. Uniquely, MRI can separate the signal from water and fat in-vivo, rendering it the most suitable imaging modality for non-invasive fat quantification. Chemical-shift-encoded MRI is commonly used for quantitative fat measurement due to its unique ability to generate a separate image for water and fat. The tissue fat concentration can be consequently estimated from the two images. However, several confounding factors can hinder the water/fat separation process, leading to incorrect estimation of fat concentration.

The inhomogeneities of the main …


Deficiency Of Kruppel-Like Factor Klf4 In Myeloid-Derived Suppressor Cells Inhibits Tumor Pulmonary Metastasis In Mice Accompanied By Decreased Fibrocytes, Y. Shi, L. Ou, S. Han, M. Li, M. M. O. Pena, E. A. Pena, Chunming Liu, M. Nagarkatti, D. Fan, W. Ai Nov 2014

Deficiency Of Kruppel-Like Factor Klf4 In Myeloid-Derived Suppressor Cells Inhibits Tumor Pulmonary Metastasis In Mice Accompanied By Decreased Fibrocytes, Y. Shi, L. Ou, S. Han, M. Li, M. M. O. Pena, E. A. Pena, Chunming Liu, M. Nagarkatti, D. Fan, W. Ai

Molecular and Cellular Biochemistry Faculty Publications

The importance of immunosuppressive myeloid-derived suppressor cells (MDSCs) bearing monocyte markers in tumor metastasis has been well established. Recently, it was reported that these cells possess phenotypic plasticity and differentiate into fibrocytes, very distinct cells that are precursors of tumorigenic myofibroblasts. However, the importance of this transdifferentiation in tumor metastasis has not been explored. Here, we describe the role of MDSC-derived fibrocytes in tumor metastasis that is regulated by Kruppel-like factor 4 (KLF4), a transcription factor that is critical to monocyte differentiation and to promotion of cancer development. Using mouse metastasis models of melanoma and breast cancer, we found that …


Variability Of Vitamins B1, B2 And Minerals Content In Baobab (Adansonia Digitata) Leaves In East And West Africa, Hyacinthe Traore, Charles Parkouda, Adama Korbo, Diarra Compaoré/Sérémé, Mamoudou H. Dicko Prof., Jan J. Svejgaard, Bréhima Diawara Nov 2014

Variability Of Vitamins B1, B2 And Minerals Content In Baobab (Adansonia Digitata) Leaves In East And West Africa, Hyacinthe Traore, Charles Parkouda, Adama Korbo, Diarra Compaoré/Sérémé, Mamoudou H. Dicko Prof., Jan J. Svejgaard, Bréhima Diawara

Pr. Mamoudou H. DICKO, PhD

The regional variability and age-age correlation on vitamin B1, vitamin B2 and minerals (Ca, Mg, P, K, Cu, Fe, Mn, Na, and Zn) concentration in baobab leaves were investigated. Baobab was cultivated from seeds from 11 african countries. Vitamins B1 and B2 content were assessed using microbiological VitaFast kits methods and minerals by atomic absorption and flame spectrometry methods. Overall, the results showed a higher content of vitamin B2 compared to vitamin B1 with the highest vitamin B2 content (1.04 +- 0.05 mg/100 g DM) from Senegal. The highest iron (Fe) content of 26.39 mg/100 g was found in baobab …


The ​Oestrogen Receptor Alpha-Regulated Lncrna ​Neat1 Is A Critical Modulator Of Prostate Cancer, Dimple Chakravarty, Andrea Sboner, Sujit S. Nair, Eugenia Giannopoulou, Ruohan Li, +16 Additional Authors Nov 2014

The ​Oestrogen Receptor Alpha-Regulated Lncrna ​Neat1 Is A Critical Modulator Of Prostate Cancer, Dimple Chakravarty, Andrea Sboner, Sujit S. Nair, Eugenia Giannopoulou, Ruohan Li, +16 Additional Authors

Biochemistry and Molecular Medicine Faculty Publications

The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERα) is expressed in prostate cancers, independent of AR status. However, the role of ERα remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERα-specific non-coding transcriptome signature. Among putatively ERα-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical …


An Active Role For The Ribosome In Determining The Fate Of Oxidized Mrna, Carrie L. Simms, Benjamin H. Hudson, John W. Mosior, Ali S. Rangwala, Hani S. Zaher Nov 2014

An Active Role For The Ribosome In Determining The Fate Of Oxidized Mrna, Carrie L. Simms, Benjamin H. Hudson, John W. Mosior, Ali S. Rangwala, Hani S. Zaher

Biology Faculty Publications & Presentations

Chemical damage to RNA affects its functional properties and thus may pose a significant hurdle to the translational apparatus; however, the effects of damaged mRNA on the speed and accuracy of the decoding process and their interplay with quality-control processes are not known. Here, we systematically explore the effects of oxidative damage on the decoding process using a well-defined bacterial in vitro translation system. We find that the oxidative lesion 8-oxoguanosine (8-oxoG) reduces the rate of peptide-bond formation by more than three orders of magnitude independent of its position within the codon. Interestingly, 8-oxoG had little effect on the fidelity …


The Formin Fmnl3 Assembles Plasma Membrane Protrusions That Participate In Cell–Cell Adhesion, Timothy J. Gauvin, Lorna E. Young, Henry N. Higgs Nov 2014

The Formin Fmnl3 Assembles Plasma Membrane Protrusions That Participate In Cell–Cell Adhesion, Timothy J. Gauvin, Lorna E. Young, Henry N. Higgs

Dartmouth Scholarship

FMNL3 is a vertebrate-specific formin protein previously shown to play a role in angiogenesis and cell migration. Here we define the cellular localization of endogenous FMNL3, the dynamics of GFP-tagged FMNL3 during cell migration, and the effects of FMNL3 suppression in mammalian culture cells. The majority of FMNL3 localizes in a punctate pattern, with >95% of these puncta being indistinguishable from the plasma membrane by fluorescence microscopy. A small number of dynamic cytoplasmic FMNL3 patches also exist, which enrich near cell–cell contact sites and fuse with the plasma membrane at these sites. These cytoplasmic puncta appear to be part of …


The Pathological Effects Of Ccr2+ Inflammatory Monocytes Are Amplified By An Ifnar1-Triggered Chemokine Feedback Loop In Highly Pathogenic Influenza Infection, Sue-Jane Lin, Ming Lo, Rei-Lin Kuo, Shin-Ru Shih, David M. Ojcius, Jean Lu, Chien-Kuo Lee, Hui-Chen Chen, Meei Yun Lin, Chuen-Miin Leu, Chia-Ni Lin, Ching-Hwa Tsai Nov 2014

The Pathological Effects Of Ccr2+ Inflammatory Monocytes Are Amplified By An Ifnar1-Triggered Chemokine Feedback Loop In Highly Pathogenic Influenza Infection, Sue-Jane Lin, Ming Lo, Rei-Lin Kuo, Shin-Ru Shih, David M. Ojcius, Jean Lu, Chien-Kuo Lee, Hui-Chen Chen, Meei Yun Lin, Chuen-Miin Leu, Chia-Ni Lin, Ching-Hwa Tsai

All Dugoni School of Dentistry Faculty Articles

Background: Highly pathogenic influenza viruses cause high levels of morbidity, including excessive infiltration of leukocytes into the lungs, high viral loads and a cytokine storm. However, the details of how these pathological features unfold in severe influenza infections remain unclear. Accumulation of Gr1 + CD11b + myeloid cells has been observed in highly pathogenic influenza infections but it is not clear how and why they accumulate in the severely inflamed lung. In this study, we selected this cell population as a target to investigate the extreme inflammatory response during severe influenza infection.

Results: We established H1N1 IAV-infected mouse models using …


A Novel Role For Nf-Κb In Proximal T Cell Signaling, Crystina Bronk Watson Nov 2014

A Novel Role For Nf-Κb In Proximal T Cell Signaling, Crystina Bronk Watson

USF Tampa Graduate Theses and Dissertations

The interrogation of T cell signaling over the past fifty years has led to the discovery of amazingly intricate cascade networks and elaborate descriptions of individual proteins' domains and functions. A complex landscape has been rendered in which proteins relay messages from the extracellular ligation of the TCR by a cognate peptide loaded MHC via changes in sub-cellular location, phosphorylation, and binding affinities and partners to enact nuclear localization of three key transcription factors required for cellular effector function and proliferation: AP-1, NF-AT, and NF-κB. Dogma has favored activation of each of these transcription regulating elements to be a linear …


Nuclear Transport Of Single Molecules: Dwell Times At The Nuclear Pore Complex, Ulrich Kubitscheck, David Grunwald, Andreas Hoekstra, Daniel Rohleder, Thorsten Kues, Jan Peter Siebrasse, Reiner Peters Nov 2014

Nuclear Transport Of Single Molecules: Dwell Times At The Nuclear Pore Complex, Ulrich Kubitscheck, David Grunwald, Andreas Hoekstra, Daniel Rohleder, Thorsten Kues, Jan Peter Siebrasse, Reiner Peters

David Grünwald

The mechanism by which macromolecules are selectively translocated through the nuclear pore complex (NPC) is still essentially unresolved. Single molecule methods can provide unique information on topographic properties and kinetic processes of asynchronous supramolecular assemblies with excellent spatial and time resolution. Here, single-molecule far-field fluorescence microscopy was applied to the NPC of permeabilized cells. The nucleoporin Nup358 could be localized at a distance of 70 nm from POM121-GFP along the NPC axis. Binding sites of NTF2, the transport receptor of RanGDP, were observed in cytoplasmic filaments and central framework, but not nucleoplasmic filaments of the NPC. The dwell times of …


Intranuclear Binding Kinetics And Mobility Of Single Native U1 Snrnp Particles In Living Cells, David Grunwald, Beatrice Spottke, Volker Buschmann, Ulrich Kubitscheck Nov 2014

Intranuclear Binding Kinetics And Mobility Of Single Native U1 Snrnp Particles In Living Cells, David Grunwald, Beatrice Spottke, Volker Buschmann, Ulrich Kubitscheck

David Grünwald

Uridine-rich small nuclear ribonucleoproteins (U snRNPs) are splicing factors, which are diffusely distributed in the nucleoplasm and also concentrated in nuclear speckles. Fluorescently labeled, native U1 snRNPs were microinjected into the cytoplasm of living HeLa cells. After nuclear import single U1 snRNPs could be visualized and tracked at a spatial precision of 30 nm at a frame rate of 200 Hz employing a custom-built microscope with single-molecule sensitivity. The single-particle tracks revealed that most U1 snRNPs were bound to specific intranuclear sites, many of those presumably representing pre-mRNA splicing sites. The dissociation kinetics from these sites showed a multiexponential decay …


Conversion Of Red Fluorescent Protein Into A Bright Blue Probe, Oksana M. Subach, Illia S. Gundorov, Masami Yoshimura, Fedor V. Subach, Jinghang Zhang, David Grunwald, Ekaterina A. Souslova, Dmitriy M. Chudakov, Vladislav V. Verkhusha Nov 2014

Conversion Of Red Fluorescent Protein Into A Bright Blue Probe, Oksana M. Subach, Illia S. Gundorov, Masami Yoshimura, Fedor V. Subach, Jinghang Zhang, David Grunwald, Ekaterina A. Souslova, Dmitriy M. Chudakov, Vladislav V. Verkhusha

David Grünwald

We used a red chromophore formation pathway, in which the anionic red chromophore is formed from the neutral blue intermediate, to suggest a rational design strategy to develop blue fluorescent proteins with a tyrosine-based chromophore. The strategy was applied to red fluorescent proteins of the different genetic backgrounds, such as TagRFP, mCherry, HcRed1, M355NA, and mKeima, which all were converted into blue probes. Further improvement of the blue variant of TagRFP by random mutagenesis resulted in an enhanced monomeric protein, mTagBFP, characterized by the substantially higher brightness, the faster chromophore maturation, and the higher pH stability than blue fluorescent proteins …


Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck Nov 2014

Autonomy And Robustness Of Translocation Through The Nuclear Pore Complex: A Single-Molecule Study, Thomas Dange, David Grunwald, Antje Grunwald, Reiner Peters, Ulrich Kubitscheck

David Grünwald

All molecular traffic between nucleus and cytoplasm occurs via the nuclear pore complex (NPC) within the nuclear envelope. In this study we analyzed the interactions of the nuclear transport receptors kapalpha2, kapbeta1, kapbeta1DeltaN44, and kapbeta2, and the model transport substrate, BSA-NLS, with NPCs to determine binding sites and kinetics using single-molecule microscopy in living cells. Recombinant transport receptors and BSA-NLS were fluorescently labeled by AlexaFluor 488, and microinjected into the cytoplasm of living HeLa cells expressing POM121-GFP as a nuclear pore marker. After bleaching the dominant GFP fluorescence the interactions of the microinjected molecules could be studied using video microscopy …


Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives Nov 2014

Nuclear Pore Component Nup98 Is A Potential Tumor Suppressor And Regulates Posttranscriptional Expression Of Select P53 Target Genes, Stephan Singer, Ruiying Zhao, Anthony M. Barsotti, Anette Ouwehand, Mina Fazollahi, Elias Coutavas, Kai Breuhahn, Olaf Neumann, Thomas Longerich, Tobias Pusterla, Maureen A. Powers, Keith M. Giles, Peter J. Leedman, Jochen Hess, David Grunwald, Harmen J. Bussemaker, Robert H. Singer, Peter Schirmacher, Carol Prives

David Grünwald

The p53 tumor suppressor utilizes multiple mechanisms to selectively regulate its myriad target genes, which in turn mediate diverse cellular processes. Here, using conventional and single-molecule mRNA analyses, we demonstrate that the nucleoporin Nup98 is required for full expression of p21, a key effector of the p53 pathway, but not several other p53 target genes. Nup98 regulates p21 mRNA levels by a posttranscriptional mechanism in which a complex containing Nup98 and the p21 mRNA 3'UTR protects p21 mRNA from degradation by the exosome. An in silico approach revealed another p53 target (14-3-3sigma) to be similarly regulated by Nup98. The expression …


Guanidinium-Rich Romp Polymers Drive Phase, Charge, And Curvature-Specific Interactions With Phospholipid Membranes, Michael T W Lis Nov 2014

Guanidinium-Rich Romp Polymers Drive Phase, Charge, And Curvature-Specific Interactions With Phospholipid Membranes, Michael T W Lis

Doctoral Dissertations

Protein transduction domains (PTDs) and their and their synthetic mimics are short sequences capable of unusually high uptake in cells. Several varieties of these molecules, including the arginine-rich Tat peptide from HIV, have been extensively used as vectors for protein, DNA, and siRNA delivery into cells. Despite the wide-ranging utility of PTDs and their mimics, their uptake mechanism is still under considerable debate. How the molecules are able to cross phospholipid membranes, and what structural components are necessary for optimal activity are poorly understood. This thesis explores how PTDMs interact with phospholipid membrane phase, anionic lipid content and negative Gaussian …


The Complexity Of Molecular Interactions And Bindings Between Cyclic Peptide And Inhibit Polymerase A And B1 (Pac-Pb1n) H1n1, Arli A. Parikesit, Harry Noviardi Hn, Djati Kerami Dk, Usman Sumo Friend Tambunan Usft Nov 2014

The Complexity Of Molecular Interactions And Bindings Between Cyclic Peptide And Inhibit Polymerase A And B1 (Pac-Pb1n) H1n1, Arli A. Parikesit, Harry Noviardi Hn, Djati Kerami Dk, Usman Sumo Friend Tambunan Usft

Arli A Parikesit

The influenza/H1N1 virus has caused hazard in the public health of many countries. Hence, existing influenza drugs could not cope with H1N1 infection due to the high mutation rate of the virus. In this respect, new method to block the virus was devised. The polymerase pac-pb1n enzyme is responsible for the replication of H1N1 virus. Thus, novel inhibitors were developed to ward off the functionality of the enzyme. In this research, cyclic peptides has been chosen to inhibit PAc-PB1n due to its proven stability in reaching the drug target. Thus, computational method for elucidating the molecular interaction between cyclic peptides …