Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Wayne State University

Discipline
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 293

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Expression And Purification Of E. Coli Yoaa, A Putative Helicase, Mark Gregory, Vincent Sutera Mr., Susan Lovett Dr. Jun 2022

Expression And Purification Of E. Coli Yoaa, A Putative Helicase, Mark Gregory, Vincent Sutera Mr., Susan Lovett Dr.

Medical Student Research Symposium

All cells must maintain their genomic integrity to survive, which they achieve through several repair mechanisms that necessitate unwinding the damaged DNA by helicases. In Escherichia coli (E. coli), YoaA has been genetically shown to be involved in DNA repair and shares conserved sequences with helicase DinG. The goal of our study was to purify YoaA for further biochemical characterization. For expression, YoaA was fused to a His tag and overexpressed in MG1655 E.coli under the lacZ or T7 promoters for 2 hours, 4 hours, or overnight at 24oC, 30oC or 37oC. For purification, crude lysate was applied to a …


The Importance Of Protein Context In Spinocerebellar Ataxia Type 3, Sean Luis Johnson Jan 2022

The Importance Of Protein Context In Spinocerebellar Ataxia Type 3, Sean Luis Johnson

Wayne State University Dissertations

Spinocerebellar Ataxia Type 3 (SCA3) is a member of the family of polyglutamine (polyQ) neurodegenerative disorders that includes Huntington's Disease and several other SCAs. SCA3, the most common dominant ataxia in the world, is caused by polyQ tract expansion in the protein, ataxin-3. How SCA3 occurs and how to treat it remain unresolved issues. The primary culprit of toxicity in all polyQ diseases is the glutamine repeat: its abnormal expansion leads to neuronal dysfunction and death. With that said, there is indisputable evidence that the way polyQ-dependent toxicity presents—areas impacted, cellular processes perturbed—is predicated in large part on regions outside …


Deconstructing Brown Adipocyte Neogenesis In Brown And White Adipose Tissue, Rayanne Burl Jan 2022

Deconstructing Brown Adipocyte Neogenesis In Brown And White Adipose Tissue, Rayanne Burl

Wayne State University Dissertations

Global incidence of Type 2 Diabetes (T2D) has reached epidemic proportions, and increasing evidence indicates that dysfunctional adipose tissue is an important contributor to the pathogenesis of T2D. Expanding brown adipocyte (BA) populations within adipose tissues through adrenergic activation improves energy balance and insulin sensitivity. In order to exploit this remodeling of adipose tissue for therapeutic benefit, we need to understand the mechanisms by which adrenergic signaling expand populations of BAs in vivo. These studies utilized single-cell RNA-sequencing and transgenic mouse models, in combination with single-molecule fluorescence in situ hybridization (smFISH) and immunoistochemical analysis, to study BA neogenesis in vivo. …


Kinase-Catalyzed Labeling To Identify Kinase-Substrate Pairs Using Γ-Phosphate Modified Atp Analogs, Rachel Beltman Jan 2022

Kinase-Catalyzed Labeling To Identify Kinase-Substrate Pairs Using Γ-Phosphate Modified Atp Analogs, Rachel Beltman

Wayne State University Dissertations

Post-translational modifications (PTMs) are responsible for a variety of cellular processes. One such PTM is protein phosphorylation, which is catalyzed by kinases. Kinase enzymes play important roles in cellular signaling pathways, but dysregulation of kinase-mediated events results in the formation of diseases, which make kinases favorable drug targets. To uncover the role kinases play in the development of diseases, kinase-mediated cellular events need to be better understood. The current gap in the field is the lack of tools available to identify the kinase that is responsible for specific phosphorylation events within the cell. To improve the gap in the field, …


Study Of Zyomogen Granule Movement Along Actin Filaments Using A Single Beam Optical Trap, Justin James Raupp Jan 2022

Study Of Zyomogen Granule Movement Along Actin Filaments Using A Single Beam Optical Trap, Justin James Raupp

Wayne State University Dissertations

Zymogen granules are enzymatic vesicles in the pancreas. The surface of these zymogen granules (ZGs) has several different kinds of myosin molecules, such as myosin 1c, 6, 5c, and 7b. These molecular motors may contribute to ZG transportation in cells. To understand the molecular motors involved in the vesicle trafficking, we observed the in vitro motility of purified ZGs from rat pancreas and examined the stepping behavior and force that is generated using a single beam optical trap. To be involved in trafficking, molecular motors have certain characteristics, a high duty ratio and the ability to move continuously along actin …


Abhd5 Induced Morphological Changes On Model Membrane Systems, Nasser S. Junedi May 2021

Abhd5 Induced Morphological Changes On Model Membrane Systems, Nasser S. Junedi

Honors College Theses

Proper regulation of neutral lipid storage (lipogenesis) and release (lipolysis) are critical molecular processes localized to an organelle called the Lipid Droplet (LD). The LD consists of a core with neutral lipids such as triacylglycerols (TAGs) and sterol esters surrounded by a phospholipid monolayer. Dysregulation of the processes localized to the LD are involved in the pathology of various diseases such as Neutral Lipid Storage Disease, diabetes, stroke and cancer. The non-enzymatic protein ABHD5 (α-β Hydrolase Domain-Containing Protein 5), is thought to play a key role in the process of lipolysis by forming homo-oligomers on the surface of the LD …


Lysine 53 Acetylation Of Cytochrome C In Prostate Cancer: Warburg Metabolism And Evasion Of Apoptosis, Viktoriia Bazylianska, Hasini A. Kalpage, Junmei Wan, Asmita Vaishnav, Gargi Mahapatra, Alice A. Turner, Dipanwita Dutta Chowdhury, Katherine Kim, Paul T. Morse, Icksoo Lee, Joseph S. Brunzelle, Lisa Polin, Prabal Subedi, Elisabeth I. Heath, Izabela Podgorski, Katrin Marcus, Brian Fp Edwards, Maik HüTtemann Apr 2021

Lysine 53 Acetylation Of Cytochrome C In Prostate Cancer: Warburg Metabolism And Evasion Of Apoptosis, Viktoriia Bazylianska, Hasini A. Kalpage, Junmei Wan, Asmita Vaishnav, Gargi Mahapatra, Alice A. Turner, Dipanwita Dutta Chowdhury, Katherine Kim, Paul T. Morse, Icksoo Lee, Joseph S. Brunzelle, Lisa Polin, Prabal Subedi, Elisabeth I. Heath, Izabela Podgorski, Katrin Marcus, Brian Fp Edwards, Maik HüTtemann

Biochemistry and Molecular Biology Faculty Publications

Prostate cancer is the second leading cause of cancer-related death in men. Two classic cancer hallmarks are a metabolic switch from oxidative phosphorylation (OxPhos) to glycolysis, known as the Warburg effect, and resistance to cell death. Cytochrome c (Cytc) is at the intersection of both pathways, as it is essential for electron transport in mitochondrial respiration and a trigger of intrinsic apoptosis when released from the mitochondria. However, its functional role in cancer has never been studied. Our data show that Cytc is acetylated on lysine 53 in both androgen hormone-resistant and -sensitive human prostate cancer xenografts. To characterize the …


Effects Of Cocaine And/Or Heroin Use On Resting Cardiovascular Function, Shabber Syed Bs, Lina A. Shkokani Bs, Leslie H. Lundahl Phd, Renato S. Roxas Md, Philip D. Levy Md, Mark K. Greenwald Phd Jan 2021

Effects Of Cocaine And/Or Heroin Use On Resting Cardiovascular Function, Shabber Syed Bs, Lina A. Shkokani Bs, Leslie H. Lundahl Phd, Renato S. Roxas Md, Philip D. Levy Md, Mark K. Greenwald Phd

Medical Student Research Symposium

Background: Regular cocaine and/or heroin use is associated with major health risks, especially cardiovascular disease (CVD), but confounded by other factors.

Objectives: We examined effects of chronic (years of regular use) and recent (past-month) use of cocaine and heroin, controlling for other factors, on resting cardiovascular function.

Methods: In a sample of cocaine and/or heroin users (N=292), we obtained data on demographics, body mass index (BMI), history of substance use, and electrocardiogram, heart rate (HR) and blood pressure (BP). Following bivariate correlations, three-block (1: demographics, BMI; 2: tobacco, alcohol, marijuana; 3: cocaine, heroin) regression analyses were …


Substrate Profiling Of The Epigenetic Erasers Hdac1 And Lsd1, Herath Mudiyansela Gedara Kavinda Eranga Herath Jan 2021

Substrate Profiling Of The Epigenetic Erasers Hdac1 And Lsd1, Herath Mudiyansela Gedara Kavinda Eranga Herath

Wayne State University Dissertations

Regulators of chromatin structure have emerged as a key driver of transcriptional responses inside the cell. Two such groups of regulators, histone writers and erasers; the proteins, that add or remove histone post translational modifications (PTMs), have become the central players in chromatin structure. Thus, the aberrant expression of writers and erasures is a hallmark in human diseases. For example, overexpression of the erasures histone deacetylase1 (HDAC1) and lysine specific demethylase1 (LSD1) had been reported in many cancers. Currently, HDAC inhibitors have been used successfully for cancer treatment and several inhibitors targeting LSD1 are in clinical trial. To date, apart …


Functional Characterization Of Threonine 49 Phosphorylation Of Cytochrome C, Antoine Khobeir Jan 2021

Functional Characterization Of Threonine 49 Phosphorylation Of Cytochrome C, Antoine Khobeir

Wayne State University Theses

Cytochrome c (Cytc) is a pivotal multifunctional mitochondrial protein that serves as a single electron carrier between complexes III and IV of the electron transport chain. It has important roles in both cellular respiration and apoptosis. The novel Thr49 (T49) phosphorylation of Cytc likely affects mitochondrial respiration, membrane potential, ROS production, ATP production, and apoptosis. Based on the functional characterization of previously mapped phosphorylation sites (Tyr97, Tyr48, Thr28, Ser47, Thr58) of the lab, we hypothesize that T49 phosphorylation will lead to controlled respiration, optimal intermediate mitochondrial membrane potential, lower ROS production, and inhibition of apoptosis compared to unphosphorylated Cytc. Here …


Novel Role Of Endoplasmic Reticulum-Associated Degradation In The Regulation Of Ceruloplasmin, Stephen William Hippleheuser Jan 2021

Novel Role Of Endoplasmic Reticulum-Associated Degradation In The Regulation Of Ceruloplasmin, Stephen William Hippleheuser

Wayne State University Theses

Ceruloplasmin (Cp) is a secreted ferroxidase produced by the hepatocytes that assists in the transport of iron throughout the human body. In human aceruloplasminemia patients, due to Cp deficiency excess intracellular iron buildup leads to ailments like liver cirrhosis, neurodegeneration, and blindness. We recently found that the biogenesis of Cp in the endoplasmic reticulum (ER) is regulated by a principal ER quality-control process, ER-associated degradation (ERAD). ERAD clears misfolded ER proteins for cytosolic proteasomal degradation, with the Sel-1 suppressor of lin-12-like (Sel1L)-HMG-CoA reductase degradation 1 (Hrd1) protein complex representing the most conserved branch in mammals. Interestingly, we found that Sel1L-Hrd1 …


Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck Jan 2021

Mnrr1: Understanding The Role Of A Novel Mitochondrial-Nuclear Regulator, Stephanie L. Gladyck

Wayne State University Dissertations

Mitochondria are complex organelles that generate most of the energy required to sustain life and function in metabolic and signaling pathways required to maintain cellular homeostasis. MNRR1 (mitochondrial nuclear retrograde regulator 1 or CHCHD2) is a small, bi-organellar twin CX9C protein that is emerging as an important regulator of mitochondrial function, apoptosis, and cellular stress by participating in mitochondrial-nuclear crosstalk. Our lab has previously shown that in the mitochondria, MNRR1 regulates complex IV (Cytochrome c oxidase or COX) and is able to finetune the oxidase function through phosphorylation status. We have also shown that during stress, mitochondrial MNRR1 levels deplete, …


Mixed-Lineage Kinase-3 (Mlk3) Plays A Negative Modulatory Role In Insulin Secretion From The Pancreatic Β-Cell, Tyler Russeth, Vijayalakshmi Thamilselvan, Anjaneyulu Kowluru Mar 2020

Mixed-Lineage Kinase-3 (Mlk3) Plays A Negative Modulatory Role In Insulin Secretion From The Pancreatic Β-Cell, Tyler Russeth, Vijayalakshmi Thamilselvan, Anjaneyulu Kowluru

Medical Student Research Symposium

Glucose-stimulated insulin secretion (GSIS) from the pancreatic β-cell in response to elevated levels of glucose is controlled by a variety of signals including intracellular calcium and nucleotides such as cAMP, ATP and GTP. These cellular signals are responsible for activation of specific kinases that mediate phosphorylation of key exocytotic proteins that lead to GSIS. In the context of protein kinases, mixed-lineage kinases (MLKs) have been implicated in an assortment of cellular functions, including cell proliferation and apoptosis. However, very little is known on potential regulatory roles of MLKs in islet β-cell function, including GSIS. The goal of this study is …


Evaluating The Anti-Cancer Efficacy Of A Synthetic Curcumin Analog On Human Melanoma Cells And Its Interaction With Standard Chemotherapeutics, Krishan Parashar, Siddhartha Sood, Ali Mehaidli, Colin Curran, Caleb Vegh, Christopher Nguyen, Christopher Pignanelli, Jianzhang Wu, Guang Liang, Yi Wang, Siyaram Pandey Mar 2020

Evaluating The Anti-Cancer Efficacy Of A Synthetic Curcumin Analog On Human Melanoma Cells And Its Interaction With Standard Chemotherapeutics, Krishan Parashar, Siddhartha Sood, Ali Mehaidli, Colin Curran, Caleb Vegh, Christopher Nguyen, Christopher Pignanelli, Jianzhang Wu, Guang Liang, Yi Wang, Siyaram Pandey

Medical Student Research Symposium

Melanoma is the leading cause of skin-cancer related deaths in North America. Metastatic melanoma is difficult to treat and chemotherapies have limited success. Furthermore, chemotherapies lead to toxic side effects due to nonselective targeting of normal cells. Curcumin is a natural product of Curcuma longa (turmeric) and has been shown to possess anti-cancer activity. However, due to its poor bioavailability and stability, natural curcumin is not an effective cancer treatment. We tested synthetic analogs of curcumin that are more stable. One of these derivatives, Compound A, has shown significant anti-cancer efficacy in colon, leukemia, and triple-negative inflammatory breast cancer cells. …


Characterization And Assembly Of The Pseudomonas Aeruginosa Aspartate Transcarbamoylase-Pseudo Dihydroorotase Complex, Chandni Patel, Asmita Vaishnav, Brian Fp Edwards, David R. Evans Mar 2020

Characterization And Assembly Of The Pseudomonas Aeruginosa Aspartate Transcarbamoylase-Pseudo Dihydroorotase Complex, Chandni Patel, Asmita Vaishnav, Brian Fp Edwards, David R. Evans

Biochemistry and Molecular Biology Faculty Publications

Pseudomonas aeruginosa is a virulent pathogen that has become more threatening with the emergence of multidrug resistance. The aspartate transcarbamoylase (ATCase) of this organism is a dodecamer comprised of six 37 kDa catalytic chains and six 45 kDa chains homologous to dihydroorotase (pDHO). The pDHO chain is inactive but is necessary for ATCase activity. A stoichiometric mixture of the subunits associates into a dodecamer with full ATCase activity. Unlike other known ATCases, the P. aeruginosa catalytic chain does not spontaneously assemble into a trimer. Chemical-crosslinking and size-exclusion chro- matography showed that P. aeruginosa ATCase is monomeric which accounts for its …


Generation Of Neural Stem Cells (Nscs) From Human Fibroblasts Using Qq-Modified Sox2 And Neurod1 Proteins, Abdullah Ibrahim Alhomoudi Jan 2020

Generation Of Neural Stem Cells (Nscs) From Human Fibroblasts Using Qq-Modified Sox2 And Neurod1 Proteins, Abdullah Ibrahim Alhomoudi

Wayne State University Theses

The generation of induced neural stem cells (iNSCs) and induced neuronal cells (iNCs) from somatic cells provides new avenues for basic research and potential transplantation therapies for neurological diseases. However, clinical applications must consider the tumor formation capabilities of the implanted cells, the inability of iNCs to self-renew in culture, and reprogramming methods that use retroviral transduction which permanently alter genetic network of the cells. Here we report the generation of protein-induced neural stem cells (piNSCs) from human dermal fibroblasts using QQ-SON pluripotent reprogramming as a tool to quickly reset the time clock of the human somatic fibroblasts to a …


Timing And Duration Of Folate Restriction Differentially Impacts Colon Carcinogenesis., Ali M. Fardous Jan 2020

Timing And Duration Of Folate Restriction Differentially Impacts Colon Carcinogenesis., Ali M. Fardous

Wayne State University Dissertations

Colorectal cancer (CRC) constitutes a major burden on the healthcare system as the second most commonly diagnosed cancer in the developed world. Dietary folate is considered an important modulator of colorectal cancer. Folate restriction has been implicated in increasing CRC incidence by disrupting nucleotide synthesis, Impacting DNA methylation and inducing genetic instability. Our research shows that the timing and duration of dietary folate restriction can differentially impact Colorectal cancer initiation. Acclimating mice to folate restriction for 8 weeks results in a reduced number of preneoplastic lesions compared to mice placed of folate restriction for 1 week prior to initiating the …


Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday Jan 2020

Computational Analysis Of Oxidative Stress In Endothelial Dysfunction: Insights On The Role Of Tetrahydrobiopterin, Ascorbate And Glutathione, Sheetal Kedar Panday

Wayne State University Dissertations

Oxidative stress and endothelial dysfunction are reported in the cardiovascular and neurovascular diseases. Oxidative stress is caused due to an increase in the generation of reactive oxygen (ROS) and nitrogen species (RNS) and incapacity of antioxidant systems to eliminate ROS and RNS. Endothelial dysfunction is characterized by a reduction in nitric oxide (NO) bioavailability. NO is constitutively produced by enzyme endothelial nitric oxide synthase (eNOS). A reduction in tetrahydrobiopterin (BH4), which is an essential cofactor of eNOS, can lead to eNOS uncoupling. There is complex interplay between the ROS/RNS and antioxidant system underlying pathophysiologies of vascular diseases, however our quantitative …


Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia Jan 2020

Termination-Independent Role Of Rat1 In Cotranscriptional Splicing In Budding Yeast, Zuzer Hakimuddin Dhoondia

Wayne State University Dissertations

Rat1 is a 5′→3′ exoribonuclease in budding yeast belonging to the XRN-family of nucleases. It is a highly conserved protein with homologs being present in fission yeast, flies, worms, mice and humans. Rat1 and its homolog in metazoan have been shown to function in multiple facets of RNA metabolism. In this study, we report a novel role of Rat1 in splicing of pre-mRNA in budding yeast. In the absence of the functional Rat1 in the nucleus, an increase in the level of unspliced transcripts was observed in yeast cells. Strand-specific TRO analysis revealed that the accumulation of unspliced transcripts upon …


Hormonal Regulation Of Glycine Decarboxylase And Its Metabolic Outcomes, Ruta Milind Jog Jan 2020

Hormonal Regulation Of Glycine Decarboxylase And Its Metabolic Outcomes, Ruta Milind Jog

Wayne State University Dissertations

The amino acid glycine is involved in generation of multiple critical metabolites including glutathione, heme, and creatinine. Interestingly, in both humans and rodents, circulating glycine levels are significantly reduced in obesity, glucose intolerance, type II diabetes and non-alcoholic fatty liver disease. The glycine cleavage system is the predominant glycine degradation pathway in humans. The rate-limiting enzyme of glycine cleavage system is glycine decarboxylase (GLDC), and loss-of-function mutations of GLDC cause hyperglycinemia. Here, we show that GLDC gene expression is upregulated in livers of mouse models of diabetes and diet-induced obesity as well as in the fasted state in normal animals. …


Novel Insights Into The Critical Role Of Cardiolipin In Cellular Metabolism And Mitochondrial Physiology, Jiajia Ji Jan 2020

Novel Insights Into The Critical Role Of Cardiolipin In Cellular Metabolism And Mitochondrial Physiology, Jiajia Ji

Wayne State University Dissertations

Cardiolipin (CL) is the signature phospholipid of mitochondria. CL and its remodeling exert critical roles in biological processes both inside and outside of mitochondria. CL abnormalities have been associated with various mitochondrial disorders and aging. Understanding the role of CL in mitochondrial physiology and cellular metabolism could provide valuable insights into cell biology and human health. Several metabolic alterations have been reported in CL-deficient cells, including accumulated lactate, decreased PDH activity, and decreased TCA cycle function. This dissertation connected these findings by showing abnormal NAD+ metabolism in various models lacking CL. Importantly, it shows that NAD+ supplementation improves mitochondrial function …


Development And Application Of Chemical Tools To Identify Kinase-Substrate Interactions, Aparni Kithulgoda Gamage Jan 2020

Development And Application Of Chemical Tools To Identify Kinase-Substrate Interactions, Aparni Kithulgoda Gamage

Wayne State University Dissertations

Post translational modifications regulate a variety of biological processes inside the cell.Protein phosphorylation is one such PTM modification catalyzed by protein kinases, which aid to transfer a signal from one place to another inside the cell. However, irregularities in kinase-mediated signaling are often implicated in many diseases, making kinases effective drug targets. To understand kinase-related disease formation and to discover drugs to treat these diseases, it is crucial to have a clear understanding on kinase-mediated cell signaling networks. A current gap in the kinase biology field is a lack of tools to identify which kinase phosphorylates which protein substrate inside …


Single-Lipid Sorting And Dynamics At Nanoscale Membrane Curvatures: The Effects Of Fluorescence Labeling, Composition, Phase, And Temperature, Xinxin Woodward Jan 2020

Single-Lipid Sorting And Dynamics At Nanoscale Membrane Curvatures: The Effects Of Fluorescence Labeling, Composition, Phase, And Temperature, Xinxin Woodward

Wayne State University Dissertations

Nanoscale membrane curvature on cell plasma membrane assists in the spatial organization and domain formation that are critical for life of eukaryotic cells. Lipids and proteins can sense, be sorted by, and generate both functional domains and membrane curvature. Reveal the relationship between membrane curvature, phase separation, and single-molecule behavior is a key to understanding fundamental processes, such as phagocytosis initiation, cell signaling, and membrane budding. Single lipid dynamic and sorting on engineered membrane curvature is studied to understand the effects of fluorescence labeling, composition, phase separation, and temperature. Single particle tracking was used to find radial averaged diffusion at …


Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco Jan 2020

Variations On A Theme: Intricacies Of Unanchored Poly-Ubiquitin Signaling And Toxicity, Jessica Renee Blount-Pacheco

Wayne State University Dissertations

Ubiquitin is an 8.5 kDa post-translational modifier involved in essentially all eukaryotic cellular processes. Through a process called ubiquitination, ubiquitinating enzymes chemically attach ubiquitin to substrate proteins to control their fates, resulting in anything from their recruitment into signaling pathways to their proteasomal degradation, with a plethora of possibilities in between. Ubiquitin molecules can also be attached to one another, resulting in poly-ubiquitin chains with various effects depending on the number of ubiquitin molecules and the specific amino acid residues used to link them together. While most poly-ubiquitin in the cell exists as conjugated species, there are also untethered poly-ubiquitin …


Germinal Center B Cell Expression Of Aire Regulates Antibody Diversification And Autoimmunity, Jordan Zheng Zhou Jan 2020

Germinal Center B Cell Expression Of Aire Regulates Antibody Diversification And Autoimmunity, Jordan Zheng Zhou

Wayne State University Dissertations

B cells are a unique subset of immune cells that, in response to antigen, diversify their antibody repertoire to generate progressively higher affinity antibodies of different isotypes through the processes of affinity maturation/somatic hypermutation (SHM) and class switch recombination (CSR). One of the major sites in which this diversification occurs is in T cell dependent microanatomical structures known as germinal centers (GC). Here, we find that GC B cells express the protein, autoimmune regulator (Aire) in a CD40 dependent manner. In these cells, Aire interacts with activation induced cytidine deaminase (AID), the protein responsible for initiating the processes of diversification …


Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage Jan 2019

Insights Into Nucleic Acid-Platinum(Ii) Compound Interactions And Structural Impacts, Supuni Duneeshya Kamal Thalalla Gamage

Wayne State University Dissertations

With the discovery of cisplatin in the 1960s, it has been widely studied as a precursor for anticancer drug development. Despite its effectiveness against certain cancers, clinical usage of cisplatin is restricted by a number of side effects and resistance. In the past decade, scientists have been exploring biologically important ligands such as sugar derivatives in the hope of overcoming such challenges. Attachment of a sugar moiety could facilitate lower accumulation of platinum drugs in the body as well as enhance cellular uptake. In this study, a carbohydrate-linked cisplatin analog, cis-dichlorido[(2-β-D-glucopyranosidyl)propane-1,3-diammine]platinum (5) has been studied. The aim was to evaluate …


The Role Of The Cell-Surface Protease Tmprss13 In Colorectal Cancer, Fausto Alexander Varela Jan 2019

The Role Of The Cell-Surface Protease Tmprss13 In Colorectal Cancer, Fausto Alexander Varela

Wayne State University Dissertations

Colorectal cancer (CRC) is one of the most common and deadly cancers in both men and women in the United States. Extracellular proteolysis is often dysregulated in cancer including (CRC), resulting in degradation of extracellular matrix, as well as cleavage, processing, or shedding of cell adhesion molecules, growth factors, and cytokines. Several members of the type II transmembrane serine protease (TTSP) family have been shown to play critical roles in cancer progression; however, many family members have not yet been characterized in malignancy. We identified TMPRSS13 transcript to be upregulated in CRC compared to normal colon. This increase was confirmed …


Trna Aminoacylation: New Protein Players And New Reactions, Whitney Noel Wood Jan 2019

Trna Aminoacylation: New Protein Players And New Reactions, Whitney Noel Wood

Wayne State University Dissertations

TRNA AMINOACYLATION: NEW PROTEIN PLAYERS AND NEW REACTIONS

by

WHITNEY N. WOOD

May 2019

Advisor: Dr. Tamara L. Hendrickson

Major: Chemistry (Biochemistry)

Degree: Doctor of Philosophy

Protein translation must usually occur with high accuracy for an organism to survive. However, Helicobacter pylori, Staphylococcus aureus, and many other microorganisms including important human pathogens, lack one or more aminoacyl-tRNA synthetase (aaRS), the enzymes that typically aminoacylate tRNAs for ribosomal translation. These organisms must use an indirect pathway to aminoacylate some tRNAs. Specifically, H. pylori lacks the genes that encode for asparaginyl- and glutaminyl-tRNA synthetases (AsnRS and GlnRS, respectively). Instead, H. pylori uses …


Biochemical, Structural, And Drug Design Studies Of Aspartate Transcarbamoylase From Pseudomonas Aeruginosa And Staphylococcus Aureus, Chandni Patel Jan 2019

Biochemical, Structural, And Drug Design Studies Of Aspartate Transcarbamoylase From Pseudomonas Aeruginosa And Staphylococcus Aureus, Chandni Patel

Wayne State University Dissertations

Sepsis affects 1.7 million people in the United States every year and nearly 270,000 people die as a result. Sepsis is characterized by systemic inflammation from an infection leading to organ dysfunction and death. Multi-drug resistance in bacteria is increasing globally, and Pseudomonas aeruginosa and Staphylococcus aureus are notorious for their multi-drug resistance and pose a serious need for the development of new antibiotics. The levels of pyrimidines in blood are too low to sustain the growth of bacteria, so they must rely on pyrimidine biosynthesis. Previous studies have shown that a defect in several pyrimidine biosynthetic enzymes resulted in …


Defining The Effect Of Environmental Perturbation On The Male Germline, Molly Estill Jan 2019

Defining The Effect Of Environmental Perturbation On The Male Germline, Molly Estill

Wayne State University Dissertations

Periconceptional environment, according to the Developmental Origins of Health and Disease (DOHaD) theory, influences offspring phenotype, primarily via epigenetic mechanisms. Although the paternal component in humans is poorly understood, both maternal and paternal peri-conceptional environment are now believed to contribute to this phenomenon. Manipulation of the early embryo for treating human infertility, is suspected of contributing to offspring abnormalities through epigenetic mechanisms. To directly address the effects of common assisted reproductive technology procedures on the offspring epigenome, the DNA methylation profiles of newborns conceived naturally, or through the use of intrauterine insemination (IUI), or in vitro fertilization (IVF) using Fresh …