Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 110

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Translational Fidelity, Mistranslation, And The Cellular Responses To Stress, Kyle Mohler, Michael Ibba Aug 2017

Translational Fidelity, Mistranslation, And The Cellular Responses To Stress, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Faithful translation of mRNA into the corresponding polypeptide is a complex multistep process, requiring accurate amino acid selection, transfer RNA (tRNA) charging and mRNA decoding on the ribosome. Key players in this process are aminoacyl-tRNA synthetases (aaRSs), which not only catalyse the attachment of cognate amino acids to their respective tRNAs, but also selectively hydrolyse incorrectly activated non-cognate amino acids and/or misaminoacylated tRNAs. This aaRS proofreading provides quality control checkpoints that exclude non-cognate amino acids during translation, and in so doing helps to prevent the formation of an aberrant proteome. However, despite the intrinsic need for high accuracy during translation, …


Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns Aug 2017

Carbonyl Reduction By Ymfi Completes The Modification Of Ef-P In Bacillus Subtilis To Prevent Accumulation Of An Inhibitory Modification State, Katherine R. Hummels, Anne Witzky, Andrei Rajkovic, Rodney Tollerson Ii, Lisa A. Jones, Michael Ibba, Daniel B. Kearns

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Translation elongation factor P (EF‐P) in Bacillus subtilis is required for a form of surface migration called swarming motility. Furthermore, B. subtilis EF‐P is post‐translationally modified with a 5‐aminopentanol group but the pathway necessary for the synthesis and ligation of the modification is unknown. Here we determine that the protein YmfI catalyzes the reduction of EF‐P‐5 aminopentanone to EF‐P‐5 aminopentanol. In the absence of YmfI, accumulation of 5‐aminopentanonated EF‐P is inhibitory to swarming motility. Suppressor mutations that enhanced swarming in the absence of YmfI were found at two positions on EF‐P, including one that changed the conserved modification site (Lys …


Elongation Factor P Interactions With The Ribosome Are Independent Of Pausing, Rodney Tollerson Ii, Anne Witzky, Michael Ibba Aug 2017

Elongation Factor P Interactions With The Ribosome Are Independent Of Pausing, Rodney Tollerson Ii, Anne Witzky, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Bacterial elongation factor P (EF-P) plays a pivotal role in the translation of polyproline motifs. To stimulate peptide bond formation, EF-P must enter the ribosome via an empty E-site. Using fluorescence-based single-molecule tracking, Mohapatra et al. (S. Mohapatra, H. Choi, X. Ge, S. Sanyal, and J. C. Weisshaar, mBio 8:e00300-17, 2017, https://doi.org/10.1128/mBio.00300-17 ) monitored the cellular distribution of EF-P and quantified the frequency of association between EF-P and the ribosome under various conditions. Findings from the study showed that EF-P has a localization pattern that is strikingly similar to that of ribosomes. Intriguingly, EF-P was seen to bind ribosomes more …


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at …


Editing Of Misaminoacylated Trna Controls The Sensitivity Of Amino Acid Stress Responses In Saccharomyces Cerevisiae, Kyle Mohler, Rebecca Mann, Tammy J. Bullwinkle, Kyle W. Hopkins, Lin Hwang, Noah M. Reynolds, Brandon Gassaway, Hans-Rudolph Aerni, Jesse Rinehart, Michael Polymenis, Kym F. Faull, Michael Ibba Feb 2017

Editing Of Misaminoacylated Trna Controls The Sensitivity Of Amino Acid Stress Responses In Saccharomyces Cerevisiae, Kyle Mohler, Rebecca Mann, Tammy J. Bullwinkle, Kyle W. Hopkins, Lin Hwang, Noah M. Reynolds, Brandon Gassaway, Hans-Rudolph Aerni, Jesse Rinehart, Michael Polymenis, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid starvation activates the protein kinase Gcn2p, leading to changes in gene expression and translation. Gcn2p is activated by deacylated tRNA, which accumulates when tRNA aminoacylation is limited by lack of substrates or inhibition of synthesis. Pairing of amino acids and deacylated tRNAs is catalyzed by aminoacyl-tRNA synthetases, which use quality control pathways to maintain substrate specificity. Phenylalanyl-tRNA synthetase (PheRS) maintains specificity via an editing pathway that targets non-cognate Tyr-tRNAPhe. While the primary role of aaRS editing is to prevent misaminoacylation, we demonstrate editing of misaminoacylated tRNA is also required for detection of amino acid starvation by …


Quality Control By Isoleucyl-Trna Synthetase Of Bacillus Subtilis Is Required For Efficient Sporulation, Elizabeth Kermgard, Zhou Yang, Annika-Marisa Michel, Rachel Simari, Jacqueline Wong, Michael Ibba, Beth A. Lazazzera Jan 2017

Quality Control By Isoleucyl-Trna Synthetase Of Bacillus Subtilis Is Required For Efficient Sporulation, Elizabeth Kermgard, Zhou Yang, Annika-Marisa Michel, Rachel Simari, Jacqueline Wong, Michael Ibba, Beth A. Lazazzera

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential function is to aminoacylate tRNAIle with isoleucine. Like some other aminoacyl-tRNA synthetases, IleRS can mischarge tRNAIle and correct this misacylation through a separate post-transfer editing function. To explore the biological significance of this editing function, we created a ileS(T233P) mutant of Bacillus subtilis that allows tRNAIle mischarging while retaining wild-type Ile-tRNAIle synthesis activity. As seen in other species defective for aminoacylation quality control, the growth rate of the ileS(T233P) strain was not significantly different from wild-type. When the ileS(T233P) strain was assessed for its ability to promote …


Ms-Read: Quantitative Measurement Of Amino Acid Incorporation, Kyle Mohler, Hans-Rudolph Aerni, Brandon Gassaway, Jiqiang Ling, Michael Ibba, Jesse Rinehart Jan 2017

Ms-Read: Quantitative Measurement Of Amino Acid Incorporation, Kyle Mohler, Hans-Rudolph Aerni, Brandon Gassaway, Jiqiang Ling, Michael Ibba, Jesse Rinehart

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosomal protein synthesis results in the genetically programmed incorporation of amino acids into a growing polypeptide chain. Faithful amino acid incorporation that accurately reflects the genetic code is critical to the structure and function of proteins as well as overall proteome integrity. Errors in protein synthesis are generally detrimental to cellular processes yet emerging evidence suggest that proteome diversity generated through mistranslation may be beneficial under certain conditions. Cumulative translational error rates have been determined at the organismal level, however codon specific error rates and the spectrum of misincorporation errors from system to system remain largely unexplored. In particular, until …


Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne Dec 2016

Synthesis Of Rhamnosylated Arginine Glycopeptides And Determination Of The Glycosidic Linkage In Bacterial Elongation Factor P, Siyao Wang, Leo Corcilius, Phillip B. Sharp, Andrei Rajkovic, Michael Ibba, Benjamin L. Parker, Richard J. Payne

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A new class of N-linked protein glycosylation – arginine rhamnosylation – has recently been discovered as a critical modification for the function of bacterial elongation factor P (EF-P). Herein, we describe the synthesis of suitably protected α- and β-rhamnosylated arginine amino acid “cassettes” that can be directly installed into rhamnosylated peptides. Preparation of a proteolytic fragment of Pseudomonas aeruginosa EF-P bearing both α- and β-rhamnosylated arginine enabled the unequivocal determination of the native glycosidic linkage to be α through 2D NMR and nano-UHPLC-tandem mass spectrometry studies.


The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias Nov 2016

The Complex Evolutionary History Of Aminoacyl-Trna Synthetases, Anargyros Chaliotis, Panayotis Vlastaridis, Dimitris Mossialos, Michael Ibba, Hubert D. Becker, Constantinos Stathopoulos, Grigorios D. Amoutzias

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases (AARSs) are a superfamily of enzymes responsible for the faithful translation of the genetic code and have lately become a prominent target for synthetic biologists. Our large-scale analysis of >2500 prokaryotic genomes reveals the complex evolutionary history of these enzymes and their paralogs, in which horizontal gene transfer played an important role. These results show that a widespread belief in the evolutionary stability of this superfamily is misconceived. Although AlaRS, GlyRS, LeuRS, IleRS, ValRS are the most stable members of the family, GluRS, LysRS and CysRS often have paralogs, whereas AsnRS, GlnRS, PylRS and SepRS are often absent …


Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba Sep 2016

Isoacceptor Specific Characterization Of Trna Aminoacylation And Misacylation In Vivo, Kyle Mohler, Rebecca Mann, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Amino acid misincorporation during protein synthesis occurs due to misacylation of tRNAs or defects in decoding at the ribosome. While misincorporation of amino acids has been observed in a variety of contexts, less work has been done to directly assess the extent to which specific tRNAs are misacylated in vivo, and the identity of the misacylated amino acid moiety. Here we describe tRNA isoacceptor specific aminoacylation profiling (ISAP), a method to identify and quantify the amino acids attached to a tRNA species in vivo. ISAP allows compilation of aminoacylation profiles for specific isoacceptors tRNAs. To demonstrate the efficacy and …


Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba Sep 2016

Maintenance Of Transcription-Translation Coupling By Elongation Factor P, Sara Elgamal, Irina Artsimovitch, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu …


Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba May 2016

Translation Control Of Swarming Proficiency In Bacillus Subtilis By 5-Amino-Pentanolylated Elongation Factor P, Andrei Rajkovic, Katherine R. Hummels, Anne Witzky, Sarah Erickson, Philip R. Gafken, Julian P. Whitelegge, Kym F. Faull, Daniel B. Kearns, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) accelerates diprolyl synthesis and requires a posttranslational modification to maintain proteostasis. Two phylogenetically distinct EF-P modification pathways have been described and are encoded in the majority of Gram-negative bacteria, but neither is present in Gram-positive bacteria. Prior work suggested that the EF-P-encoding gene (efp) primarily supports Bacillus subtilis swarming differentiation, whereas EF-P in Gram-negative bacteria has a more global housekeeping role, prompting our investigation to determine whether EF-P is modified and how it impacts gene expression in motile cells. We identified a 5-aminopentanol moiety attached to Lys32 of B. subtilis EF-P that is …


Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba May 2016

Multiple Quality Control Pathways Limit Non-Protein Amino Acid Use By Yeast Cytoplasmic Phenylalanyl-Trna Synthetase, Adil Moghal, Lin Hwang, Kym F. Faull, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNAPhe. We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNAPhe with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic …


Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba May 2016

Non-Canonical Roles Of Trnas And Trna Mimics In Bacterial Cell Biology, Assaf Katz, Sara Elgamal, Andrei Rajkovic, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond …


Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert Apr 2016

Novel Compound Heterozygous Mutations Expand The Recognized Phenotypes Of Fars2-Linked Disease, Melissa A. Walker, Kyle Mohler, Kyle W. Hopkins, Derek H. Oakley, David A. Sweetser, Michael Ibba, Matthew P. Frosch, Ronald L. Thibert

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance …


Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Nov 2015

Dancing Through Life: Molecular Dynamics Simulations And Network-Centric Modeling Of Allosteric Mechanisms In Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that …


Elongation Factor-P At The Crossroads Of The Host-Endosymbiont Interface, Andrei Rajkovic, Anne Witzky, William Navarre, Andrew J. Darwin, Michael Ibba Sep 2015

Elongation Factor-P At The Crossroads Of The Host-Endosymbiont Interface, Andrei Rajkovic, Anne Witzky, William Navarre, Andrew J. Darwin, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) is an ancient bacterial translational factor that aids the ribosome in polymerizing oligo-prolines. EF-P structurally resembles tRNA and binds in-between the exit and peptidyl sites of the ribosome to accelerate the intrinsically slow reaction of peptidyl-prolyl bond formation. Recent studies have identified in separate organisms, two evolutionarily convergent EF-P post-translational modification systems (EPMS), split predominantly between gammaproteobacteria, and betaproteobacteria. In both cases EF-P receives a post-translational modification, critical for its function, on a highly conserved residue that protrudes into the peptidyl-transfer center of the ribosome. EPMSs are comprised of a gene(s) that synthesizes the precursor molecule …


Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance In Pseudomonas Aeruginosa, Andrei Rajkovic, Sarah Erickson, Anne Witzky, Owen E. Branson, Jin Seo, Philip R. Gafken, Michael A. Frietas, Julian P. Whitelegge, Kym F. Faull, William Wiley Navarre, Andrew J. Darwin, Michael Ibba Jun 2015

Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance In Pseudomonas Aeruginosa, Andrei Rajkovic, Sarah Erickson, Anne Witzky, Owen E. Branson, Jin Seo, Philip R. Gafken, Michael A. Frietas, Julian P. Whitelegge, Kym F. Faull, William Wiley Navarre, Andrew J. Darwin, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes …


Transfer Rna Comes Of Age, Michael Ibba Jan 2015

Transfer Rna Comes Of Age, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

"The year the journal RNA was founded was slated by some in scientific publishing to be the year that one particular type of RNA's run in the spotlight would end. In 1995 I had recently started as a post-doc with Dieter Söll at Yale when he came into the lab to solemnly inform us all that an editor at a certain (S)cience journal had just told him “we won't be publishing any more tRNA papers.” For a post-doc who had migrated across the Atlantic for the sole purpose of furthering his career by working on tRNA this was not great …


Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana Dec 2014

Effect Of Hydrogen Peroxide On The Biosynthesis Of Heme And Proteins: Potential Implications For The Partitioning Of Glu-TrnaGlu Between These Pathways, Carolina Farah, Gloria Levicán, Michael Ibba, Omar Orellana

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Glutamyl-tRNA (Glu-tRNAGlu) is the common substrate for both protein translation and heme biosynthesis via the C5 pathway. Under normal conditions, an adequate supply of this aminoacyl-tRNA is available to both pathways. However, under certain circumstances, Glu-tRNAGlu can become scarce, resulting in competition between the two pathways for this aminoacyl-tRNA. In Acidithiobacillus ferrooxidans, glutamyl-tRNA synthetase 1 (GluRS1) is the main enzyme that synthesizes Glu-tRNAGlu. Previous studies have shown that GluRS1 is inactivated in vitro by hydrogen peroxide (H2O2). This raises the question as to whether H2O2 negatively affects …


The Non-Canonical Hydroxylase Structure Of Yfcm Reveals A Metal Ion-Coordination Motif Required For Ef-P Hydroxylation, Kan Kobayashi, Assaf Katz, Andrei Rajkovic, Ryohei Ishii, Owen E. Branson, Michael A. Freitas, Ryuichiro Ishitani, Michael Ibba, Osamu Nureki Oct 2014

The Non-Canonical Hydroxylase Structure Of Yfcm Reveals A Metal Ion-Coordination Motif Required For Ef-P Hydroxylation, Kan Kobayashi, Assaf Katz, Andrei Rajkovic, Ryohei Ishii, Owen E. Branson, Michael A. Freitas, Ryuichiro Ishitani, Michael Ibba, Osamu Nureki

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

EF-P is a bacterial tRNA-mimic protein, which accelerates the ribosome-catalyzed polymerization of poly-prolines. In Escherichia coli, EF-P is post-translationally modified on a conserved lysine residue. The post-translational modification is performed in a two-step reaction involving the addition of a β-lysine moiety and the subsequent hydroxylation, catalyzed by PoxA and YfcM, respectively. The β-lysine moiety was previously shown to enhance the rate of poly-proline synthesis, but the role of the hydroxylation is poorly understood. We solved the crystal structure of YfcM and performed functional analyses to determine the hydroxylation mechanism. In addition, YfcM appears to be structurally distinct from any …


Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba Sep 2014

Mistranslation Of The Genetic Code, Adil Moghal, Kyle Mohler, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

During mRNA decoding at the ribosome, deviations from stringent codon identity, or “mistranslation,” are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view “errors” in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non‐protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.


Relaxed Substrate Specificity Leads To Extensive Trna Mischarging By Streptococcus Pneumoniae Class I And Class Ii Aminoacyl-Trna Synthetases, Jennifer Shepherd, Michael Ibba Sep 2014

Relaxed Substrate Specificity Leads To Extensive Trna Mischarging By Streptococcus Pneumoniae Class I And Class Ii Aminoacyl-Trna Synthetases, Jennifer Shepherd, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases provide the first step in protein synthesis quality control by discriminating cognate from noncognate amino acid and tRNA substrates. While substrate specificity is enhanced in many instances by cis- and trans-editing pathways, it has been revealed that in organisms such as Streptococcus pneumoniae some aminoacyl-tRNA synthetases display significant tRNA mischarging activity. To investigate the extent of tRNA mischarging in this pathogen, the aminoacylation profiles of class I isoleucyl-tRNA synthetase (IleRS) and class II lysyl-tRNA synthetase (LysRS) were determined. Pneumococcal IleRS mischarged tRNAIle with both Val, as demonstrated in other bacteria, and Leu in a tRNA sequence-dependent …


Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre Aug 2014

Translation Initiation Rate Determines The Impact Of Ribosome Stalling On Bacterial Protein Synthesis, Steven J. Hersch, Sara Elgamal, Assaf Katz, Michael Ibba, William Wiley Navarre

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Ribosome stalling during translation can be caused by a number of characterized mechanisms. However, the impact of elongation stalls on protein levels is variable, and the reasons for this are often unclear. To investigate this relationship, we examined the bacterial translation elongation factor P (EF-P), which plays a critical role in rescuing ribosomes stalled at specific amino acid sequences including polyproline motifs. In previous proteomic analyses of both Salmonella and Escherichia coli efp mutants, it was evident that not all proteins containing a polyproline motif were dependent on EF-P for efficient expression in vivo . The α- and β-subunits of …


Ef-P Dependent Pauses Integrate Proximal And Distal Signals During Translation, Sara Elgamal, Assaf Katz, Steven J. Hersch, David Newsom, Peter White, William Wiley Navarre, Michael Ibba Aug 2014

Ef-P Dependent Pauses Integrate Proximal And Distal Signals During Translation, Sara Elgamal, Assaf Katz, Steven J. Hersch, David Newsom, Peter White, William Wiley Navarre, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Elongation factor P (EF-P) is required for the efficient synthesis of proteins with stretches of consecutive prolines and other motifs that would otherwise lead to ribosome pausing. However, previous reports also demonstrated that levels of most diprolyl-containing proteins are not altered by the deletion of efp. To define the particular sequences that trigger ribosome stalling at diprolyl (PPX) motifs, we used ribosome profiling to monitor global ribosome occupancy in Escherichia coli strains lacking EF-P. Only 2.8% of PPX motifs caused significant ribosomal pausing in the Δefp strain, with up to a 45-fold increase in ribosome density observed at …


Trnas As Regulators Of Biological Processes, Medha Raina, Michael Ibba Jun 2014

Trnas As Regulators Of Biological Processes, Medha Raina, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Transfer RNAs (tRNA) are best known for their role as adaptors during translation of the genetic code. Beyond their canonical role during protein biosynthesis, tRNAs also perform additional functions in both prokaryotes and eukaryotes for example in regulating gene expression. Aminoacylated tRNAs have also been implicated as substrates for non-ribosomal peptide bond formation, post-translational protein labeling, modification of phospholipids in the cell membrane, and antibiotic biosyntheses. Most recently tRNA fragments, or tRFs, have also been recognized to play regulatory roles. Here, we examine in more detail some of the new functions emerging for tRNA in a variety of cellular processes …


Oxidation Of Cellular Amino Acid Pools Leads To Cytotoxic Mistranslation Of The Genetic Code, Tammy J. Bullwinkle, Noah M. Reynolds, Medha Raina, Adil Moghal, Eleftheria Matsa, Andrei Rajkovic, Huseyin Kayadibi, Farbod Fazlollahi, Christopher Ryan, Nathaniel Howitz, Kym F. Faull, Beth A. Lazazzera, Michael Ibba Jun 2014

Oxidation Of Cellular Amino Acid Pools Leads To Cytotoxic Mistranslation Of The Genetic Code, Tammy J. Bullwinkle, Noah M. Reynolds, Medha Raina, Adil Moghal, Eleftheria Matsa, Andrei Rajkovic, Huseyin Kayadibi, Farbod Fazlollahi, Christopher Ryan, Nathaniel Howitz, Kym F. Faull, Beth A. Lazazzera, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress …


Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba May 2014

Reduced Amino Acid Specificity Of Mammalian Tyrosyl-Trna Synthetase Is Associated With Elevated Mistranslation Of Tyr Codons, Medha Raina, Adil Moghal, Amanda Kano, Mathew Jerums, Paul D. Schnier, Shun Luo, Rohini Deshpande, Pavel D. Bondarenko, Henry Lin, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, …


The Abcs Of The Ribosome, Kurt Fredrick, Michael Ibba Feb 2014

The Abcs Of The Ribosome, Kurt Fredrick, Michael Ibba

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

An ABC protein that binds the ribosomal exit site suggests a new mechanism for direct regulation of translation in response to changing ATP levels in the cell.


Simultaneous Bactericidal And Osteogenic Effect Of Nanoparticulate Calcium Phosphate Powders Loaded With Clindamycin On Osteoblasts Infected With Staphylococcus Aureus, Vuk Uskoković, Tejal A. Dasai Jan 2014

Simultaneous Bactericidal And Osteogenic Effect Of Nanoparticulate Calcium Phosphate Powders Loaded With Clindamycin On Osteoblasts Infected With Staphylococcus Aureus, Vuk Uskoković, Tejal A. Dasai

Pharmacy Faculty Articles and Research

S aureus internalized by bone cells and shielded from the immune system provides a reservoir of bacteria in recurring osteomyelitis. Its targeting by the antibiotic therapy may thus be more relevant for treating chronic bone infection than eliminating only the pathogens colonizing the bone matrix. Assessed was the combined osteogenic and antibacterial effect of clindamycinloaded calcium phosphate nanoparticles of different monophasic compositions on co-cultures comprising osteoblasts infected with S aureus. Antibiotic-carrying particles were internalized by osteoblasts and minimized the concentration of intracellular bacteria. In vitro treatments of the infected cells, however, could not prevent cell necrosis due to the …