Open Access. Powered by Scholars. Published by Universities.®

Agriculture Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Agriculture

Next-Generation Technologies Unlock New Possibilities To Track Rangeland Productivity And Quantify Multi-Scale Conservation Outcomes, Caleb P. Roberts, David E. Naugle, Brady W. Allred, Victoria M. Donovan, Dillon T. Fogarty, Matthew O. Jones, Jeremy D. Maestas, Andrew C. Olsen, Dirac L. Twidwell Jr Sep 2022

Next-Generation Technologies Unlock New Possibilities To Track Rangeland Productivity And Quantify Multi-Scale Conservation Outcomes, Caleb P. Roberts, David E. Naugle, Brady W. Allred, Victoria M. Donovan, Dillon T. Fogarty, Matthew O. Jones, Jeremy D. Maestas, Andrew C. Olsen, Dirac L. Twidwell Jr

Department of Agronomy and Horticulture: Faculty Publications

Historically, relying on plot-level inventories impeded our ability to quantify large-scale change in plant biomass, a key indicator of conservation practice outcomes in rangeland systems. Recent technological advances enable assessment at scales appropriate to inform management by providing spatially comprehensive estimates of productivity that are partitioned by plant functional group across all contiguous US rangelands. We partnered with the Sage Grouse and Lesser Prairie-Chicken Initiatives and the Nebraska Natural Legacy Project to demonstrate the ability of these new datasets to quantify multi-scale changes and heterogeneity in plant biomass following mechanical tree removal, prescribed fire, and prescribed grazing. In Oregon’s sagebrush …


Advances In Field-Based High-Throughput Photosynthetic Phenotyping, Peng Fu, Christopher M. Montes, Matthew H. Siebers, Nuria Gomez-Casanovas, Justin M. Mcgrath, Elizabeth A. Ainsworth, Carl J. Bernacchi May 2022

Advances In Field-Based High-Throughput Photosynthetic Phenotyping, Peng Fu, Christopher M. Montes, Matthew H. Siebers, Nuria Gomez-Casanovas, Justin M. Mcgrath, Elizabeth A. Ainsworth, Carl J. Bernacchi

United States Department of Agriculture-Agricultural Research Service / University of Nebraska-Lincoln: Faculty Publications

Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing …


Regional Plant Community Differences In The Nebraska Sandhills, Travis Millikan May 2022

Regional Plant Community Differences In The Nebraska Sandhills, Travis Millikan

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

The Nebraska Sandhills is very valuable to the state of Nebraska, representing one of the most in-tact and largest grassland ecosystems in temperate regions in the world. Rangeland managers must understand plant community dynamics across the Sandhills to better inform management decisions. The first objective of this study was to evaluate plant community variability on upland Sands ecological sites across different precipitation zones in the Nebraska Sandhills. The second objective of our study was to utilize the Rangeland Analysis Platform (RAP) to examine spatial and temporal variability in biomass production and cover on pastures of ranches analyzed in the first …


Identifying Conifer Tree Vs. Deciduous Shrub And Tree Regeneration Trajectories In A Space-For-Time Boreal Peatland Fire Chronosequence Using Multispectral Lidar, Humaira Enayetullah, Laura Chasmer, Christopher Hopkinson, Dan Thompson, Danielle Cobbaert Jan 2022

Identifying Conifer Tree Vs. Deciduous Shrub And Tree Regeneration Trajectories In A Space-For-Time Boreal Peatland Fire Chronosequence Using Multispectral Lidar, Humaira Enayetullah, Laura Chasmer, Christopher Hopkinson, Dan Thompson, Danielle Cobbaert

Aspen Bibliography

Wildland fires and anthropogenic disturbances can cause changes in vegetation species composition and structure in boreal peatlands. These could potentially alter regeneration trajectories following severe fire or through cumulative impacts of climate-mediated drying, fire, and/or anthropogenic disturbance. We used lidar-derived point cloud metrics, and site-specific locational attributes to assess trajectories of post-disturbance vegetation regeneration in boreal peatlands south of Fort McMurray, Alberta, Canada using a space-for-time-chronosequence. The objectives were to (a) develop methods to identify conifer trees vs. deciduous shrubs and trees using multi-spectral lidar data, (b) quantify the proportional coverage of shrubs and trees to determine environmental conditions driving …


Predicting Spatial-Temporal Patterns Of Diet Quality And Large Herbivore Performance Using Satellite Time Series, Sean P. Kearney, Lauren M. Porensky, David J. Augustine, Justin D. Derner, Feng Gao Jan 2022

Predicting Spatial-Temporal Patterns Of Diet Quality And Large Herbivore Performance Using Satellite Time Series, Sean P. Kearney, Lauren M. Porensky, David J. Augustine, Justin D. Derner, Feng Gao

United States Department of Agriculture-Agricultural Research Service / University of Nebraska-Lincoln: Faculty Publications

Adaptive management of large herbivores requires an understanding of how spatial-temporal fluctuations in forage biomass and quality influence animal performance. Advances in remote sensing have yielded information about the spatial-temporal dynamics of forage biomass, which in turn have informed rangeland management decisions such as stocking rate and paddock selection for free-ranging cattle. However, less is known about the spatial-temporal patterns of diet quality and their influence on large herbivore performance. This is due to infrequent concurrent ground observations of forage conditions with performance (e.g., mass gain), and previously limited satellite data at fine spatial and temporal scales. We combined multi-temporal …